会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method to calculate hot-electron test voltage differential for assessing
microprocessor reliability
    • 计算热电子测试电压差的方法来评估微处理器的可靠性
    • US5634001A
    • 1997-05-27
    • US474441
    • 1995-06-07
    • Steven W. MittlDavid E. MoranTimothy J. O'GormanKimball M. Watson
    • Steven W. MittlDavid E. MoranTimothy J. O'GormanKimball M. Watson
    • G01R31/30G06F11/24G06F11/26G06F11/25
    • G06F11/24G01R31/3004G06F11/261
    • A method and system are provided for determining a guard band voltage differential for testing a microprocessor. The guard band voltage differential approximates microprocessor circuit propagation delay degradation expected to occur over the life of the microprocessor. The system and method are performed by first partitioning a microprocessor into a plurality of cones of n circuit level models. Timing simulation data and degradation data are created to represent, respectively, the timing operation for each of the circuit level model circuit paths, and the hot-electron effects on propagation delay degradation for each of the circuit level models. Propagation delay is identified using this data for each of the circuit paths for the circuit level models at times corresponding to the beginning-of-life and end-of-life of the microprocessor. Propagation delay degradation is calculated as the difference between the propagation delay at these times. A range of applied power supply voltages necessary to successfully perform a functional test of the microprocessor over a corresponding range of microprocessor cycle times is experimentally determined. Based on the calculated propagation delay degradation and on the range of applied power supply voltages, a guard band voltage differential for testing the microprocessor is determined.
    • 提供了一种用于确定用于测试微处理器的保护带电压差的方法和系统。 保护带电压差近似微处理器在微处理器使用寿命期间预期发生的微​​处理器电路传播延迟劣化。 该系统和方法通过首先将微处理器划分成n个电路级模型的多个锥来执行。 创建定时仿真数据和劣化数据以分别表示每个电路级模型电路路径的定时操作,以及针对每个电路级模型的热电子对传播延迟劣化的影响。 在与微处理器的使用寿命和使用寿命相对应的时间,针对电路电平模型的每个电路路径,使用该数据来识别传播延迟。 传播延迟退化计算为这些时间的传播延迟之间的差异。 在微处理器循环时间的相应范围内成功执行微处理器的功能测试所需的一系列应用电源电压是实验确定的。 基于所计算的传播延迟劣化和所施加的电源电压的范围,确定用于测试微处理器的保护带电压差。
    • 2. 发明授权
    • Method to assess electromigration and hot electron reliability for
microprocessors
    • 评估微处理器的电迁移和热电子可靠性的方法
    • US5533197A
    • 1996-07-02
    • US327151
    • 1994-10-21
    • David E. MoranTimothy J. O'GormanKimball M. Watson
    • David E. MoranTimothy J. O'GormanKimball M. Watson
    • G01R31/26G01R31/28G06F11/34G06F11/00
    • G01R31/2858G01R31/2648G06F11/34G01R31/287
    • A method of assessing the tolerance of a microprocessor to propagation time degradation caused by electromigration effects and hot electron effects is provided. Reference values for interconnection resistance (IR) degradation and drain current (DC) degradation are compute, at nominal fabrication process and microprocessor lifetime application conditions. These results may be tabulated for a plurality of output driver load capacitances. Test IR degradation and test DC degradation values are calculated by scaling the reference IR and DC degradation values, respectively, for actual test conditions. The circuit propagation time and the propagation delay degradation caused by both electromigration and hot electron effects are calculated at process and lifetime environmental conditions. A timing equation is evaluated using distinctly identified components of the propagation delay degradation caused by electromigration and hot electron effects, to assess the toleration of the microprocessor to electromigration and hot electron induced propagation delay degradation.
    • 提供了一种评估微机对由电迁移效应和热电子效应引起的传播时间劣化的容限的方法。 互连电阻(IR)劣化和漏极电流(DC)劣化的参考值在标称制造工艺和微处理器使用寿命应用条件下进行计算。 这些结果可以列出多个输出驱动器负载电容。 通过对实际测试条件分别缩放参考IR和DC降级值来计算测试IR降解和测试DC降解值。 在过程和终身环境条件下计算电迁移和电子电子效应引起的电路传播时间和传播延迟劣化。 使用由电迁移和热电子效应引起的传播延迟劣化的明确识别的分量来评估时序方程,以评估微处理器对电迁移和热电子诱导传播延迟退化的容忍度。
    • 3. 发明授权
    • IC interconnect for high current
    • IC互连用于高电流
    • US08089160B2
    • 2012-01-03
    • US11954866
    • 2007-12-12
    • Ping-Chuan WangKimball M. WatsonKai Xiu
    • Ping-Chuan WangKimball M. WatsonKai Xiu
    • H01L23/48H01L23/52
    • H01L23/5226H01L23/528H01L23/5286H01L23/5329H01L2924/0002H01L2924/00
    • An IC interconnect according to one embodiment includes a first via positioned in a dielectric and coupled to a high current device at one end; a buffer metal segment positioned in a dielectric and coupled to a top portion of the first via; and a plurality of second vias positioned in a dielectric and coupled to the buffer metal segment at a bottom end and to a metal power line at a top end thereof, wherein the first via is coupled to a first end of the buffer metal segment and the plurality of second vias are coupled to a second end of the buffer metal segment, such that the first via is horizontally off-set from all of the plurality of second vias, wherein the butter metal segment is substantially shorter in length than the metal power line.
    • 根据一个实施例的IC互连包括位于电介质中并且在一端耦合到高电流器件的第一通孔; 位于电介质中并耦合到第一通孔的顶部的缓冲金属段; 以及多个第二通孔,其位于电介质中并在底端处连接到缓冲金属段,并在其顶端处连接到金属电源线,其中第一通孔耦合到缓冲金属段的第一端,并且 多个第二通孔耦合到缓冲金属段的第二端,使得第一通孔与所有多个第二通孔水平偏移,其中黄金金属段的长度短于金属电源线 。