会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • PREDICTING SERVICE REQUEST BREACHES
    • 预测服务请求违规
    • US20130132060A1
    • 2013-05-23
    • US13298673
    • 2011-11-17
    • Yogesh P. BadheSteven G. BarbeeGeorge E. Stark
    • Yogesh P. BadheSteven G. BarbeeGeorge E. Stark
    • G06G7/48
    • G06F17/3071G06F17/3061G06Q10/0631G06Q10/06313G06Q10/0633
    • An approach for prioritizing work requests to resolve incidents in an information technology (IT) infrastructure is presented. Historical data of work requests to resolve incidents in the IT infrastructure is divided into first and second data sets. A first set of data fields of work requests in the first data set is used to generate incident concept(s). The incident concept(s) are combined with a second set of data fields of the work requests in the first data set to form a set of predictive variables. Utilizing the predictive variables, a statistical model is generated for predicting whether or not work requests will be resolved in accordance with a service level target. The statistical model is validated using the second data set. The statistical model is deployed to the IT infrastructure.
    • 介绍了一种在信息技术(IT)基础架构中优先处理工作请求以解决事件的方法。 在IT基础架构中解决事件的工作请求的历史数据分为第一和第二数据集。 第一组数据集中的工作请求的第一组数据字段用于生成事件概念。 事件概念与第一数据集中的工作请求的第二组数据字段组合以形成一组预测变量。 利用预测变量,生成统计模型,用于预测工作请求是否将根据服务水平目标被解决。 统计模型使用第二个数据集进行验证。 统计模型部署到IT基础设施。
    • 5. 发明授权
    • Apparatus for chemical vapor deposition of aluminum oxide
    • 氧化铝化学气相沉积装置
    • US5614247A
    • 1997-03-25
    • US316303
    • 1994-09-30
    • Steven G. BarbeeRichard A. ContiAlexander KostenkoNarayana V. SarmaDonald L. WilsonJustin W. WongSteven P. Zuhoski
    • Steven G. BarbeeRichard A. ContiAlexander KostenkoNarayana V. SarmaDonald L. WilsonJustin W. WongSteven P. Zuhoski
    • C23C16/40C23C16/46C23C16/52H01L21/205H01L21/31
    • C23C16/403C23C16/46C23C16/52
    • An apparatus in a chemical vapor deposition (CVD) system monitors the actual wafer/substrate temperature during the deposition process. The apparatus makes possible the production of high quality aluminum oxide films with real-time wafer/substrate control. An infrared (IR) temperature monitoring device is used to control the actual wafer temperature to the process temperature setpoint. This eliminates all atmospheric temperature probing. The need for test runs and monitor waters as well as the resources required to perform the operations is eliminated and operating cost are reduced. High quality, uniform films of aluminum oxide can be deposited on a silicon substrates with no need for additional photolithographic steps to simulate conformality that are present in a sputtered (PVD) type application. The result is a reduction in required process steps with subsequent anticipated savings in equipment, cycle time, chemicals, reduce handling, and increased yield of devices on the substrate. The apparatus incorporates a heated source material, heated delivery lines, heated inert gas purge lines, a pressure differential mass flow controller, a control system with related valving, and a vacuum process chamber with walls that are temperature controlled as a complete source delivery system to accurately and repeatably provide source vapor for LPCVD deposition of aluminum oxide onto silicon substrates.
    • 化学气相沉积(CVD)系统中的装置在沉积过程中监测实际的晶片/衬底温度。 该设备使得可以生产具有实时晶片/衬底控制的高品质氧化铝膜。 使用红外(IR)温度监测装置将实际晶片温度控制到过程温度设定值。 这消除了所有的大气温度探测。 测试运行和监控水的需求以及执行操作所需的资源被消除,运行成本降低。 可以在硅衬底上沉积高质量均匀的氧化铝膜,而不需要额外的光刻步骤来模拟存在于溅射(PVD)型应用中的共形性。 结果是所需的工艺步骤减少,随后预期节省设备,循环时间,化学品,减少处理和提高基材上装置的产量。 该装置包括加热的源材料,加热的输送管线,加热的惰性气体吹扫管线,压差质量流量控制器,具有相关阀门的控制系统和具有作为完整源输送系统温度控制的壁的真空处理室 准确并重复地提供源蒸气,用于LPCVD在硅衬底上沉积氧化铝。
    • 8. 发明授权
    • In situ, non-destructive CVD surface monitor
    • 原位,无损CVD表面监测
    • US5386121A
    • 1995-01-31
    • US173314
    • 1993-12-23
    • Steven G. BarbeeTony F. HeinzLeping LiVictor J. Silvestri
    • Steven G. BarbeeTony F. HeinzLeping LiVictor J. Silvestri
    • C23C16/52G01N21/55G01N21/09
    • C23C16/52G01N21/552
    • A non-intrusive, in-situ monitoring technique and apparatus is used for evaluating the presence and extent of a critical contaminating or passivating layer on a transparent sample, prior to a subsequent process step. A multiple internal reflection apparatus and method without the need for aligning mirrors reduces the time to maximize the light intensity through the sample and to the detector and eliminates the intensity loss due to reflection from each mirror. The technique and apparatus can be used to monitor for a critical hydrogen passivation layer so that it is maintained on the silicon surface right up to the point at which the reactants are introduced for the deposition. The in-situ monitoring and process control technique uses Fourier Transform Infrared Spectroscopy with Multiple Internal Reflections (FTIRS-MIR) which looks at the Si--H bond vibration. Apparatus implementing the technique provides a means of insuring reproducibility in films through direct monitoring of the passivating layer. The technique can be utilized in UHV Chemical Vapor Deposition (CVD) Low Pressure CVD (LPCVD), mid-pressure and atmospheric Chemical Vapor Deposition (CVD) systems. The technique provides a powerful experimental technique for correlating imposed experimental conditions with the presence or destruction of the passivation and the subsequent film quality obtained. The method is applicable to any portion of the electromagnetic spectrum for which the sample is transparent and internally reflecting with the absorption of energy at the sample's surface attributable to any species of interest that can be detected.
    • 在随后的处理步骤之前,使用非侵入式原位监测技术和装置来评估透明样品上临界污染或钝化层的存在和程度。 不需要对准反射镜的多重内反射装置和方法减少了通过样品和检测器使光强度最大化的时间,并消除了由于每个反射镜的反射引起的强度损失。 该技术和装置可用于监测临界氢钝化层,使得其保持在硅表面上直到引入反应物用于沉积的点。 原位监测和过程控制技术使用具有多重内部反射(FTIRS-MIR)的傅里叶变换红外光谱,其观察Si-H键振动。 实施该技术的装置提供了通过直接监测钝化层来确保膜再现性的方法。 该技术可用于特高压化学气相沉积(CVD)低压CVD(LPCVD),中压和大气化学气相沉积(CVD)系统。 该技术提供了强大的实验技术,用于将施加的实验条件与钝化的存在或破坏以及获得的随后的膜质量相关联。 该方法适用于电磁谱的任何部分,其中样品是透明的并且内部反射,其中能够在样品表面处吸收可归因于可以检测的任何感兴趣的物质。
    • 9. 发明授权
    • Interferometer for in situ measurement of thin film thickness changes
    • 干涉仪用于原位测量薄膜厚度变化
    • US5220405A
    • 1993-06-15
    • US811506
    • 1991-12-20
    • Steven G. BarbeeLeping LiVictor J. Silvestri
    • Steven G. BarbeeLeping LiVictor J. Silvestri
    • G01B9/02G01B11/00G01B11/06H01L21/306H01L21/66H01S3/00
    • G01B11/0675
    • An interferometer 10 for measuring the position of the process surface 21 of a substrate 20 includes a coherent light source 12 for providing a light beam 14 which is partially transmitted and partially reflected by a beam splitter 16. The reflected light beam 18 is reflected off of the process surface 21 and the transmitted light beam 30 is reflected off of a translator 32 which vibrates a predetermined distance at a predetermined frequency. The phase shift between the light beams 22, 31 reflected off of translator 32 and the process surface 21 is measured using a photodetector 24, which provides an output signal 26 to a feedback servo unit 28. The servo unit 28 provides an output signal 38 which controls the vibration of translator 32. The output signal 38 of servo unit 28 is also indicative of the position of the process surface 21.
    • 用于测量衬底20的处理表面21的位置的干涉仪10包括相干光源12,用于提供被分束器16部分透射和部分反射的光束14.反射光束18被反射离开 处理表面21和透射光束30从以预定频率振动预定距离的平移器32反射。 使用光电检测器24测量从平移器32和处理表面21反射的光束22,31之间的相移,光电检测器24向反馈伺服单元28提供输出信号26.伺服单元28提供输出信号38, 控制转换器32的振动。伺服单元28的输出信号38也指示处理表面21的位置。
    • 10. 发明授权
    • Thin film semiconductor device and method for manufacture
    • 薄膜半导体器件及其制造方法
    • US4400715A
    • 1983-08-23
    • US208442
    • 1980-11-19
    • Steven G. BarbeeJames M. LeasJames R. LloydArunachala Nagarajan
    • Steven G. BarbeeJames M. LeasJames R. LloydArunachala Nagarajan
    • H01L29/73H01L21/02H01L21/20H01L21/28H01L21/3205H01L21/331H01L21/74H01L21/76H01L21/768H01L21/822H01L23/52H01L27/00H01L27/12H01L29/04
    • H01L21/743H01L21/2026H01L21/8221H01L23/481H01L29/04H01L2924/0002H01L2924/09701
    • A process for the preparation of a semiconductor device in a thin film of a monocrystalline semiconductor material supported on the surface of a substrate. In the process a thin film of a monocrystalline semiconductor material is formed on a substrate. The film of monocrystalline semiconductor material is doped at various depths with various types and concentrations of dopants. Thereafter, contacts are established at various depths of the doped thin film. In one embodiment, a thin film of a non-monocrystalline semiconductor material is deposited on a substrate. The thin film of non-monocrystalline semiconductor material is doped in situ as it is being deposited with various doping impurities to provide various types and concentrations of doping impurities at various depths. The thin film of non-monocrystalline semiconductor material has at least one tapered region terminating in a point. The thin film of non-monocrystalline semiconductor material is traversed with a particle beam. The traverse is initiated at the point causing nucleation of a crystal at the point and subsequent growth of a monocrystalline thin film of semiconductor material from the point during the traverse. Contacts are then established at various depths to provide a semiconductor device, such as a bipolar transistor.
    • 一种用于制备支撑在衬底表面上的单晶半导体材料的薄膜中的半导体器件的方法。 在此过程中,单晶半导体材料的薄膜形成在基板上。 单晶半导体材料的膜在各种深度掺杂各种类型和浓度的掺杂剂。 此后,在掺杂薄膜的各种深度处建立接触。 在一个实施例中,将非单晶半导体材料的薄膜沉积在衬底上。 非单晶半导体材料的薄膜原位掺杂,因为它被各种掺杂杂质沉积,以在各种深度提供各种类型和浓度的掺杂杂质。 非单晶半导体材料的薄膜具有至少一个尖端区域终止于一点。 非单晶半导体材料的薄膜用粒子束穿过。 横穿是在导致晶体成核的点处开始的,并且在横越过程中半导体材料的单晶薄膜随后生长。 然后在各种深度建立触点以提供诸如双极晶体管的半导体器件。