会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of preparing a magnetic material
    • 磁性材料的制备方法
    • US4753675A
    • 1988-06-28
    • US920018
    • 1986-10-17
    • Stanford R. OvshinskyStephen J. HudgensDavid D. AllredGregory DeMaggioRussell C. Custer
    • Stanford R. OvshinskyStephen J. HudgensDavid D. AllredGregory DeMaggioRussell C. Custer
    • B01J19/12B22F9/00B22F9/28H01F1/057H05B6/80C22B1/00
    • H01F1/0571B01J19/126B22F9/004B22F9/28H05B6/80B01J2219/0894B01J2219/1227
    • A method of forming a magnetic material. The magnetic material is a solid mass of grains, and has magnetic parameters characterized by: (1) a maximum magnetic energy product, (BH).sub.max, greater than 15 megagaussoersteds; and (2) a remanence greater than 9 kilogauss. The magnetic material is prepared by a two step solidification, heat treatment process. The solidification process is carried out by growing microwave powder or snow. The microwave powder or snow is grown by introducing a reaction gas comprised of precursor compounds of the magnetic material into a substantially enclosed reaction vessel. The reaction gas is energized by providing a source of microwave energy coupled to the substantially enclosed reaction vessel while maintaining the reaction gas pressure high enough to form the powdery microwave polymerizate, condensate, or precipitate, i.e., microwave snow. The solid particles of microwave snow have a morphology characterized as being one or more of (i) amorphous; (ii) microcrystalline; or (iii) polycrystalline. The grains within the solid have, at this stage of the process, an average grain characteristic dimension less than that of the heat treated magnetic material. In the second, or heat treating, stage of the process, the atomized solid particles are heat treated to form a solid material comprised of grains meeting at grain boundaries. The grains and grain boundaries have the morphology of the magnetic material.
    • 一种形成磁性材料的方法。 磁性材料是固体颗粒,具有磁性参数,其特征在于:(1)最大磁能积(BH)max,大于15兆比特; 和(2)大于9千字节的剩磁。 磁性材料通过两步固化,热处理工艺制备。 凝固过程是通过生长微波粉或雪来实现的。 通过将由磁性材料的前体化合物构成的反应气体引入基本上封闭的反应容器中来生长微波粉末或雪。 反应气体通过提供耦合到基本上封闭的反应容器的微波能量来激励,同时保持反应气体压力足够高以形成粉末微波聚合物,冷凝物或沉淀物,即微波雪。 微波雪的固体颗粒具有以下特征的形态:(i)无定形的一种或多种; (ii)微晶; 或(iii)多晶。 在该过程的这个阶段,固体颗粒的平均颗粒特征尺寸小于热处理的磁性材料的平均颗粒特征尺寸。 在该方法的第二阶段或热处理阶段中,雾化的固体颗粒被热处理以形成由晶界相遇的晶粒构成的固体材料。 晶粒和晶界具有磁性材料的形态。
    • 2. 发明授权
    • Method of preparing a magnetic material
    • 磁性材料的制备方法
    • US4715891A
    • 1987-12-29
    • US919935
    • 1986-10-17
    • Stanford R. OvshinskyStephen J. HudgensDavid D. AllredGregory DeMaggio
    • Stanford R. OvshinskyStephen J. HudgensDavid D. AllredGregory DeMaggio
    • H01F1/057H01F41/20H01F41/22H01F1/02
    • H01F1/0574H01F1/0571H01F41/20H01F41/22
    • A method of forming a magnetic material. The magnetic material is a solid mass of grains, and has magnetic parameters characterized by : (1) a maximum magnetic energy product, (BH).sub.max, greater than 15 megagaussoersteds; and (2) a remanence greater than 9 kilogauss. The magnetic material is prepared by a two step solidification, heat treatment process. The solidification process is carried out by controlled vaporization of precursor elements of the alloy into an inert atmosphere, with subsequent controlled vapor phase condensation. This may be accomplished by vaporizing a precursor type alloy in a plasma torch, such as an argon torch, a hydrogen torch, or other electro-arc torch to form a particulate fine grain alloy. The resulting product of this alternative method is a particulate fine grain alloy. The solid particles have a morphology characterized as being one or more of (i) amorphous; (ii) microcrystalline; or (iii) polycrystalline. The grains within the solid have, at this stage of the process, an average grain characteristic dimension less than that of the heat treated magnetic material. In the second, or heat treating, stage of the process, the fine grain solid particles are heat treated to form a solid material comprised of grains meeting at grain boundaries. The grains and grain boundaries have the morphology of the magnetic material.
    • 一种形成磁性材料的方法。 磁性材料是固体颗粒,具有磁性参数,其特征在于:(1)最大磁能积(BH)max,大于15兆比特; 和(2)大于9千字节的剩磁。 磁性材料通过两步固化,热处理工艺制备。 固化过程通过将合金的前体元素控制蒸发成惰性气氛来进行,随后控制气相冷凝。 这可以通过在诸如氩炬,氢炬或其它电弧炬的等离子体焰炬中蒸发前体型合金来实现,以形成颗粒细晶粒合金。 该替代方法的所得产物是颗粒细晶粒合金。 固体颗粒具有以下特征的形态:(i)无定形的一种或多种; (ii)微晶; 或(iii)多晶。 在该过程的这个阶段,固体颗粒的平均颗粒特征尺寸小于热处理的磁性材料的平均颗粒特征尺寸。 在该方法的第二阶段或热处理阶段中,细晶粒固体颗粒被热处理以形成由晶界相遇的晶粒组成的固体材料。 晶粒和晶界具有磁性材料的形态。
    • 3. 发明授权
    • Method of preparing a magnetic material
    • 磁性材料的制备方法
    • US4715890A
    • 1987-12-29
    • US919934
    • 1986-10-17
    • Stanford R. OvshinskyStephen J. HudgensDavid D. AllredGregory Demaggio
    • Stanford R. OvshinskyStephen J. HudgensDavid D. AllredGregory Demaggio
    • B22F9/24H01F1/057C22C1/04
    • H01F1/0573B22F9/24
    • A method of forming a magnetic material. The magnetic material is a solid mass of grains, and has magnetic parameters characterized by: (1) a maximum magnetic energy product, (BH).sub.max, greater than 15 megagaussoersteds; and (2) a remanence greater than 8 kilogauss. The magnetic material is prepared by a two step solidification, heat treatment process. The solidification process is carried out by: (a) forming a solution of reducible precursor compounds of the magnetic material; and (b) thereafter reducing the reducible, precursor compounds and forming a precipitate thereof. The precipitate has a morphology characterized as being one or more of (i) amorphous, (ii) microcrystalline, or (iii) polycrystalline. The grains within the precipitate have, at this stage of the process, an average grain characteristic dimension less than that of the heat treated magnetic material. In the second, or heat treating, stage of the process, the precipitated solid is heat treated to form a solid material comprised of grains meeting at grain boundaries. The grains and grain boundaries have the morphology of the magnetic material.
    • 一种形成磁性材料的方法。 磁性材料是固体颗粒,具有磁性参数,其特征在于:(1)最大磁能积(BH)max,大于15兆比特; 和(2)大于8千瓦的剩磁。 磁性材料通过两步固化,热处理工艺制备。 凝固过程通过以下步骤进行:(a)形成磁性材料的可还原的前体化合物溶液; 和(b)然后减少可还原的前体化合物并形成其沉淀物。 沉淀物具有表征为(i)无定形,(ii)微晶或(iii)多晶中的一种或多种的形态。 在该过程的这个阶段,沉淀物中的晶粒的平均晶粒特征尺寸小于热处理的磁性材料的平均晶粒特征尺寸。 在该方法的第二阶段或热处理阶段,对沉淀的固体进行热处理以形成由晶界相遇的晶粒组成的固体材料。 晶粒和晶界具有磁性材料的形态。
    • 7. 发明授权
    • Method of making amorphous semiconductor alloys and devices using
microwave energy
    • 制造使用微波能量的非晶半导体合金和器件的方法
    • US4517223A
    • 1985-05-14
    • US423424
    • 1982-09-24
    • Stanford R. OvshinskyDavid D. AllredLee WalterStephen J. Hudgens
    • Stanford R. OvshinskyDavid D. AllredLee WalterStephen J. Hudgens
    • C23C16/30C23C16/50C23C16/511H01J37/32H01L21/205H01L31/04C23C11/02
    • H01J37/3222C23C16/511H01J37/32192H01J37/32275H01L21/02381H01L21/02425H01L21/02532H01L21/02576H01L21/02579H01L21/0262
    • A process for making amorphous semiconductor alloy films and devices at high deposition rates utilizes microwave energy to form a deposition plasma. The alloys exhibit high quality electronic properties suitable for many applications including photovoltaic applications.The process includes the steps of providing a source of microwave energy, coupling the microwave energy into a substantially enclosed reaction vessel containing the substrate onto which the amorphous semiconductor film is to be deposited, and introducing into the vessel reaction gases including at least one semiconductor containing compound. The microwave energy and the reaction gases form a glow discharge plasma within the vessel to deposit an amorphous semiconductor film from the reaction gases onto the substrate. The reactions gases can include silane (SiH.sub.4), silicon tetrafluoride (SiF.sub.4), silane and silicon tetrafluoride, silane and germane (GeH.sub.4), and silicon tetrafluoride and germane. The reaction gases can also include germane or germanium tetrafluoride (GeF.sub.4). To all of the foregoing, hydrogen (H.sub.2) can also be added. Dopants, either p-type or n-type can also be added to the reaction gases to form p-type or n-type alloy films, respectively. Also, band gap increasing elements such as carbon or nitrogen can be added in the form of, for example, methane or ammonia gas to widen the band gap of the alloys.
    • 制造非晶半导体合金膜和高沉积速率的器件的方法利用微波能量来形成沉积等离子体。 该合金表现出高质量的电子性能,适用于许多应用,包括光伏应用。 该方法包括以下步骤:提供微波能量源,将微波能量耦合到基本上封闭的反应容器中,所述反应容器含有要沉积非晶半导体膜的衬底,并将包含至少一个含有 复合。 微波能量和反应气体在容器内形成辉光放电等离子体,以将非晶半导体膜从反应气体沉积到衬底上。 反应气体可以包括硅烷(SiH 4),四氟化硅(SiF 4),硅烷和四氟化硅,硅烷和锗烷(GeH 4)以及四氟化硅和锗烷。 反应气体还可以包括锗烷或四氟化锗(GeF 4)。 对于所有这些,也可以加入氢(H 2)。 也可以将p型或n型掺杂剂添加到反应气体中以分别形成p型或n型合金膜。 此外,带隙增加元素如碳或氮可以以例如甲烷或氨气的形式加入,以加宽合金的带隙。
    • 9. 发明授权
    • Method of making amorphous semiconductor alloys and devices using
microwave energy
    • 制造使用微波能量的非晶半导体合金和器件的方法
    • US4504518A
    • 1985-03-12
    • US605575
    • 1984-04-30
    • Stanford R. OvshinskyDavid D. AllredLee WalterStephen J. Hudgens
    • Stanford R. OvshinskyDavid D. AllredLee WalterStephen J. Hudgens
    • C23C16/50C23C16/511H01J37/32H01L21/205H01L29/161H01L31/04H01L31/20B05D3/06
    • H01J37/32C23C16/511H01J37/3222H01J37/32275H01L21/0242H01L21/02425H01L21/0245H01L21/02488H01L21/02505H01L21/02532H01L21/0262H01L29/161H01L31/202Y02E10/50Y02P70/521
    • A low pressure process for making amorphous semiconductor alloy films and devices at high deposition rates and high gas conversion efficiencies utilizes microwave energy to form a deposition plasma. The alloys exhibit high-quality electronic properties suitable for many applications including photovoltaic and electrophotographic applications.The process includes the steps of providing a source of microwave energy, coupling the microwave energy into a substantially enclosed reaction vessel containing the substrate onto which the amorphous semiconductor film is to be deposited, introducing into the vessel at least one reaction gas and evacuating the vessel to a low enough deposition pressure to deposit the film at high deposition rates with high reaction gas conversion efficiencies without any significant powder or polymeric inclusions. The microwave energy and the reaction gases form a glow discharge plasma within the vessel to deposit an amorphous semiconductor film from the reaction gases onto the substrate. The reaction gases can include silane (SiH.sub.4), silicon tetrafluoride (SiF.sub.4), silane and silicon tetrafluoride, silane and germane (GeH.sub.4), and silicon tetrafluoride and germane. The reaction gases can also include germane or germanium tetrafluoride (GeF.sub.4). To all of the foregoing, hydrogen (H.sub.2) can also be added. Dopants, either p-type or n-type can also be added to the reaction gases to form p-type or n-type alloy films, respectively. Also, band gap increasing elements such as carbon or nitrogen can be added in the form of, for example, methane or ammonia gas to widen the band gap of the alloys.
    • 用于制造非晶半导体合金膜和具有高沉积速率和高气体转换效率的器件的低压工艺利用微波能量来形成沉积等离子体。 该合金表现出高质量的电子性能,适用于许多应用,包括光伏和电子照相应用。 该方法包括以下步骤:提供微波能量源,将微波能量耦合到基本上封闭的反应容器中,所述反应容器含有要沉积非晶半导体膜的基底,将至少一个反应气体引入容器中并抽真空 达到足够低的沉积压力,以高反应气体转化效率以高沉积速率沉积膜,而没有任何显着的粉末或聚合物夹杂物。 微波能量和反应气体在容器内形成辉光放电等离子体,以将非晶半导体膜从反应气体沉积到衬底上。 反应气体可以包括硅烷(SiH4),四氟化硅(SiF4),硅烷和四氟化硅,硅烷和锗烷(GeH4)以及四氟化硅和锗烷。 反应气体还可以包括锗烷或四氟化锗(GeF 4)。 对于所有这些,也可以加入氢(H 2)。 也可以将p型或n型掺杂剂添加到反应气体中以分别形成p型或n型合金膜。 此外,带隙增加元素如碳或氮可以以例如甲烷或氨气的形式加入,以加宽合金的带隙。