会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Magnetoresistive element and magnetic head
    • 磁阻元件和磁头
    • US07855859B2
    • 2010-12-21
    • US12005273
    • 2007-12-27
    • Shinji HaraKoji ShimazawaYoshihiro TsuchiyaTomohito MizunoTsuyoshi IchikiToshiyuki Ayukawa
    • Shinji HaraKoji ShimazawaYoshihiro TsuchiyaTomohito MizunoTsuyoshi IchikiToshiyuki Ayukawa
    • G11B5/33
    • G01R33/098B82Y25/00G01R33/093G11B5/3906H01L43/08
    • In an MR element, first and second ferromagnetic layers are antiferromagnetically coupled to each other through a spacer layer, and have magnetizations that are in opposite directions when no external magnetic field is applied thereto and that change directions in response to an external magnetic field. The spacer layer and the second ferromagnetic layer are stacked in this order on the first ferromagnetic layer. The first ferromagnetic layer includes a plurality of ferromagnetic material layers stacked, and an insertion layer made of a nonmagnetic material and inserted between respective two of the ferromagnetic material layers that are adjacent to each other along the direction in which the layers are stacked. The ferromagnetic material layers and the spacer layer each include a component whose crystal structure is a face-centered cubic structure. The spacer layer and the insertion layer are each composed of an element having an atomic radius greater than that of at least one element constituting the ferromagnetic material layers.
    • 在MR元件中,第一和第二铁磁层通过间隔层彼此反铁磁耦合,并且当不施加外部磁场并且响应于外部磁场改变方向时,具有相反方向的磁化。 间隔层和第二铁磁层依次堆叠在第一铁磁层上。 第一铁磁层包括堆叠的多个铁磁材料层和由非磁性材料制成的插入层,并且插入在彼此相邻的两个铁磁材料层之间,沿堆叠层的方向相邻。 铁磁材料层和间隔层各自包括晶体结构为面心立方结构的成分。 间隔层和插入层各自由原子半径大于构成铁磁体层的至少一个元素的原子半径的元素构成。
    • 3. 发明申请
    • Magnetoresistive element and magnetic head
    • 磁阻元件和磁头
    • US20090168264A1
    • 2009-07-02
    • US12005273
    • 2007-12-27
    • Shinji HaraKoji ShimazawaYoshihiro TsuchiyaTomohito MizunoTsuyoshi IchikiToshiyuki Ayukawa
    • Shinji HaraKoji ShimazawaYoshihiro TsuchiyaTomohito MizunoTsuyoshi IchikiToshiyuki Ayukawa
    • G11B5/33
    • G01R33/098B82Y25/00G01R33/093G11B5/3906H01L43/08
    • In an MR element, first and second ferromagnetic layers are antiferromagnetically coupled to each other through a spacer layer, and have magnetizations that are in opposite directions when no external magnetic field is applied thereto and that change directions in response to an external magnetic field. The spacer layer and the second ferromagnetic layer are stacked in this order on the first ferromagnetic layer. The first ferromagnetic layer includes a plurality of ferromagnetic material layers stacked, and an insertion layer made of a nonmagnetic material and inserted between respective two of the ferromagnetic material layers that are adjacent to each other along the direction in which the layers are stacked. The ferromagnetic material layers and the spacer layer each include a component whose crystal structure is a face-centered cubic structure. The spacer layer and the insertion layer are each composed of an element having an atomic radius greater than that of at least one element constituting the ferromagnetic material layers.
    • 在MR元件中,第一和第二铁磁层通过间隔层彼此反铁磁耦合,并且当不施加外部磁场并且响应于外部磁场改变方向时,具有相反方向的磁化。 间隔层和第二铁磁层依次堆叠在第一铁磁层上。 第一铁磁层包括堆叠的多个铁磁材料层和由非磁性材料制成的插入层,并且插入在彼此相邻的两个铁磁材料层之间,沿堆叠层的方向相邻。 铁磁材料层和间隔层各自包括晶体结构为面心立方结构的成分。 间隔层和插入层各自由原子半径大于构成铁磁体层的至少一个元素的原子半径的元素构成。
    • 7. 发明申请
    • MAGNETO-RESISTIVE EFFECT DEVICE OF THE CPP TYPE, AND MAGNETIC DISK SYSTEM
    • CPP类型和磁盘系统的磁阻效应器件
    • US20090190270A1
    • 2009-07-30
    • US12022538
    • 2008-01-30
    • Tsutomu ChouYoshihiro TsuchiyaDaisuke MiyauchiTakahiko MachitaShinji HaraTomohito MizunoHironobu MatsuzawaToshiyuki AyukawaKoji ShimazawaKiyoshi Noguchi
    • Tsutomu ChouYoshihiro TsuchiyaDaisuke MiyauchiTakahiko MachitaShinji HaraTomohito MizunoHironobu MatsuzawaToshiyuki AyukawaKoji ShimazawaKiyoshi Noguchi
    • G11B5/33
    • G11B5/398B82Y25/00G01R33/093G11B5/3916G11B5/3932G11B5/3967
    • The invention provides a magnetoresistive device with the CPP (current perpendicular to plane) structure, comprising a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed with said nonmagnetic intermediate layer interposed between them, with a sense current applied in the stacking direction, wherein each of said first and second ferromagnetic layers comprises a sensor area joining to the nonmagnetic intermediate layer near a medium opposite plane and a magnetization direction control area that extends further rearward (toward the depth side) from the position of the rear end of said nonmagnetic intermediate layer; a magnetization direction control multilayer arrangement is interposed at an area where the magnetization direction control area for said first ferromagnetic layer is opposite to the magnetization direction control area for said second ferromagnetic layer in such a way that the magnetizations of the said first and second ferromagnetic layers are antiparallel with each other along the width direction axis; and said sensor area is provided at both width direction ends with biasing layers working such that the mutually antiparallel magnetizations of said first and second ferromagnetic layers intersect in substantially orthogonal directions. It is thus possible to obtain a magnetoresistive device that, while the magnetization directions of two magnetic layers (free layers) stay stabilized, can have high reliability, and can improve linear recording densities by the adoption of a structure capable of narrowing the read gap (the gap between the upper and lower shields) thereby meeting recent demands for ultra-high recording densities.
    • 本发明提供了一种具有CPP(电流垂直于平面)结构的磁阻器件,包括非磁性中间层,并且第一铁磁层和第二铁磁层层叠并形成有介于它们之间的所述非磁性中间层,施加感应电流 其特征在于,所述第一和第二铁磁体层中的每一个包括与介质相对平面附近的非磁性中间层连接的传感器区域和从所述第一和第二铁磁层的位置向后延伸(朝向深度侧)的磁化方向控制区域 所述非磁性中间层的后端; 磁化方向控制多层布置被插入在所述第一铁磁层的磁化方向控制区域与所述第二铁磁层的磁化方向控制区域相反的区域处,使得所述第一和第二铁磁层的磁化 沿着宽度方向轴线彼此反平行; 并且所述传感器区域设置在两个宽度方向端,偏压层工作,使得所述第一和第二铁磁层的相互反平行磁化在大致正交的方向相交。 因此,可以获得在两个磁性层(自由层)的磁化方向保持稳定的同时可以具有高可靠性的磁阻器件,并且可以通过采用能够缩小读取间隙的结构来提高线性记录密度( 上,下屏蔽之间的间隙),从而满足了对超高记录密度的最新要求。
    • 9. 发明申请
    • MAGNETORESISTIVE DEVICE OF THE CPP TYPE, AND MAGNETIC DISK SYSTEM
    • US20090290264A1
    • 2009-11-26
    • US12126567
    • 2008-05-23
    • Toshiyuki AyukawaTakahiko MachitaDaisuke MiyauchiTsutomu ChouKoji ShimazawaShinji HaraTomohito MizunoYoshihiro Tsuchiya
    • Toshiyuki AyukawaTakahiko MachitaDaisuke MiyauchiTsutomu ChouKoji ShimazawaShinji HaraTomohito MizunoYoshihiro Tsuchiya
    • G11B5/33
    • G11B5/398B82Y25/00G01R33/093G11B5/3932
    • The invention provides a magnetoresistive device of the CPP (current perpendicular to plane) structure, comprising a magnetoresistive unit, and a first, substantially soft magnetic shield layer positioned below and a second, substantially soft magnetic shield layer positioned above, which are located and formed such that the magnetoresistive effect is sandwiched between them from above and below, with a sense current applied in the stacking direction. The magnetoresistive unit comprises a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed such that said nonmagnetic intermediate layer is sandwiched between them. At least one of the first shield layer positioned below and the second shield layer positioned above is configured in a framework form having a planar shape (X-Y plane) defined by the width and length directions of the device. The framework has a front frame-constituting portion located on a medium opposite plane side in front and near where the magnetoresistive unit is positioned, and any other frame portion. The any other frame portion partially comprises a combination of a nonmagnetic gap layer with a bias magnetic field-applying layer. The bias magnetic field-applying layer is constructed by repeating the stacking of a multilayer unit at least twice or up to 50 times, wherein the multilayer unit comprises a nonmagnetic underlay layer and a high-coercive material layer. The nonmagnetic gap layer is designed and located such that a magnetic flux given out of the bias magnetic field-applying layer is efficiently sent out to the front frame-constituting portion. The combination of the nonmagnetic gap layer with the bias magnetic field-applying layer forms a closed magnetic path with a magnetic flux going all the way around the framework, and turns the magnetization of the front frame-constituting portion into a single domain. It is thus possible to make the domain control of the shield layers much more stable, achieve remarkable improvements in resistance to an external magnetic field, and make the operation of the device much more reliable.
    • 10. 发明授权
    • CPP type magneto-resistive effect device having a semiconductor oxide spacer layer and magnetic disk system
    • 具有半导体氧化物间隔层和磁盘系统的CPP型磁阻效应器件
    • US07672085B2
    • 2010-03-02
    • US11626562
    • 2007-01-24
    • Shinji HaraKei HirataKoji ShimazawaYoshihiro TsuchiyaTomohito Mizuno
    • Shinji HaraKei HirataKoji ShimazawaYoshihiro TsuchiyaTomohito Mizuno
    • G11B5/39
    • G11B5/4826B82Y10/00B82Y25/00G11B5/3906G11B2005/3996
    • The invention provides a giant magneto-resistive effect device (CPP-GMR device) having a CPP (current perpendicular to plane) structure comprising a spacer layer, and a fixed magnetized layer and a free layer stacked one upon another with said spacer layer interleaved between them, with a sense current applied in a stacking direction, wherein the spacer layer comprises a first and a second nonmagnetic metal layer, each formed of a nonmagnetic metal material, and a semiconductor oxide layer interleaved between the first and the second nonmagnetic metal layer, wherein the semiconductor oxide layer that forms a part of the spacer layer is made of indium oxide (In2O3), or the semiconductor oxide layer contains indium oxide (In2O3) as its main component, and an oxide containing a tetravalent cation of SnO2 is contained in the indium oxide that is the main component. The semiconductor oxide layer that forms a part of the spacer layer can thus be made thick while the device has a low area resistivity as desired, ensuring much more favorable advantages: ever higher MR performance, prevention of device area resistivity variations, and much improved reliability of film characteristics.
    • 本发明提供一种具有CPP(垂直于平面的电流)结构的巨磁阻效应器件(CPP-GMR器件),其包括间隔层,以及固定磁化层和自由层,所述固定磁化层和自由层彼此层叠, 它们具有沿层叠方向施加的感测电流,其中间隔层包括由非磁性金属材料形成的第一和第二非磁性金属层和交错在第一和第二非磁性金属层之间的半导体氧化物层, 其中形成间隔层的一部分的半导体氧化物层由氧化铟(In 2 O 3)制成,或者半导体氧化物层包含氧化铟(In 2 O 3)作为其主要成分,并且包含含有SnO 4的四价阳离子的氧化物 作为主要成分的氧化铟。 因此,形成间隔层的一部分的半导体氧化物层可以制成厚度,同时器件根据需要具有低的面积电阻率,确保更有利的优点:越来越高的MR性能,防止器件面积电阻率变化和大大提高的可靠性 的电影特色。