会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Velocity measuring method and velocity measuring device using the same
    • 速度测量方法和使用其的速度测量装置
    • US07946992B2
    • 2011-05-24
    • US11915625
    • 2006-01-06
    • Shinichiro UmemuraTakashi AzumaTetsuya HayashiNaoyuki Murayama
    • Shinichiro UmemuraTakashi AzumaTetsuya HayashiNaoyuki Murayama
    • A61B8/00
    • G01S15/8981A61B8/06A61B8/488G01S15/8977
    • The present invention is to provide a velocity measuring method and a velocity measuring device for carrying out the method. The velocity measuring method includes: a step (S4) for expanding N time series signals by using 0-th to (N−1)-th degree discrete Legendre function as a base; a step (S5) for calculating 2n-th degree complex expansion coefficient by multiplying a linear combination of a (2n−1)-th degree expansion coefficient and a ( 2n+1)-th degree expansion coefficient by an imaginary unit and then linearly combining the result and a 2n-th degree expansion coefficient, and calculating a (2n+1)-th degree complex expansion coefficient by multiplying the (2n+1)-th degree expansion coefficient by an imaginary unit and then linearly combining the result, the 2n-th degree expansion coefficient and a (2n+2)-th degree expansion coefficient; a degree decision step (S4) for determining the degree m of a coefficient having the maximum absolute value among the complex expansion coefficients; and a step (S8) for calculating a signed velocity signal concerning a moving reflection object from a ratio of square sums of the expansion coefficients or complex expansion coefficients corresponding to the degree m.
    • 本发明提供一种用于实施该方法的速度测量方法和速度测量装置。 速度测量方法包括:通过使用第0到第(N-1)度离散勒让德函数作为基础来扩展N个时间序列信号的步骤(S4) 通过将第(2n-1)个膨胀系数和第(2n + 1)次膨胀系数的线性组合乘以虚数单位然后线性地计算2n倍复数膨胀系数的步骤(S5) 组合结果和2n度膨胀系数,并且通过将第(2n + 1)度膨胀系数乘以虚数单位然后将结果线性组合来计算第(2n + 1)度复数膨胀系数, 第2n度膨胀系数和第(2n + 2)膨胀系数; 用于确定复数展开系数中具有最大绝对值的系数的程度m的度决定步骤(S4) 以及用于根据与度数m对应的展开系数或复扩展系数的平方和的比率来计算关于移动反射物体的有符号速度信号的步骤(S8)。
    • 2. 发明申请
    • VELOCITY MEASURING METHOD AND VELOCITY MEASURING DEVICE USING THE SAME
    • 使用相同的速度测量方法和速度测量装置
    • US20090177091A1
    • 2009-07-09
    • US11915625
    • 2006-01-06
    • Shinichiro UmemuraTakashi AzumaTetsuya HayashiNaoyuki Murayama
    • Shinichiro UmemuraTakashi AzumaTetsuya HayashiNaoyuki Murayama
    • A61B8/06
    • G01S15/8981A61B8/06A61B8/488G01S15/8977
    • The present invention is to provide a velocity measuring method and a velocity measuring device for carrying out the method. The velocity measuring method includes: a step (S4) for expanding N time series signals by using 0-th to (N−1)-th degree discrete Legendre function as a base; a step (S5) for calculating 2n-th degree complex expansion coefficient by multiplying a linear combination of a (2n−1)-th degree expansion coefficient and a (2n+1)-th degree expansion coefficient by an imaginary unit and then linearly combining the result and a 2n-th degree expansion coefficient, and calculating a (2n+1)-th degree complex expansion coefficient by multiplying the (2n+1)-th degree expansion coefficient by an imaginary unit and then linearly combining the result, the 2n-th degree expansion coefficient and a (2n+2)-th degree expansion coefficient; a degree decision step (S4) for determining the degree m of a coefficient having the maximum absolute value among the complex expansion coefficients; and a step (S8) for calculating a signed velocity signal concerning a moving reflection object from a ratio of square sums of the expansion coefficients or complex expansion coefficients corresponding to the degree m.
    • 本发明提供一种用于实施该方法的速度测量方法和速度测量装置。 速度测量方法包括:通过使用第0到第(N-1)度离散勒让德函数作为基础来扩展N个时间序列信号的步骤(S4) 通过将第(2n-1)个膨胀系数和第(2n + 1)次膨胀系数的线性组合乘以虚数单位然后线性地计算2n倍复数膨胀系数的步骤(S5) 组合结果和2n度膨胀系数,并且通过将第(2n + 1)度膨胀系数乘以虚数单位然后将结果线性组合来计算第(2n + 1)度复数膨胀系数, 第2n度膨胀系数和第(2n + 2)膨胀系数; 用于确定复数展开系数中具有最大绝对值的系数的程度m的度决定步骤(S4) 以及用于根据与度数m对应的展开系数或复扩展系数的平方和的比率来计算关于移动反射物体的有符号速度信号的步骤(S8)。
    • 3. 发明授权
    • Ultrasonic imaging apparatus
    • 超声波成像装置
    • US08083679B1
    • 2011-12-27
    • US11572322
    • 2005-07-20
    • Takashi AzumaShinichiro UmemuraYo Taniguchi
    • Takashi AzumaShinichiro UmemuraYo Taniguchi
    • A61B8/14
    • A61B8/0883A61B8/13G01S15/8984
    • An ultrasonic image capturing apparatus is disclosed for transmitting ultrasonic pulses from an ultrasonic probe in which elements are arranged two-dimensionally to a subject, receiving the ultrasonic pulses reflected by the subject, and displaying a slice image of the subject. A vector Doppler processor detects motion of the subject along the direction of an aperture of a receiving beam former, and a displacement detector detects motion of a focus region in the subject based on a result of computation of the vector Doppler processor. A scanning plate setting section determines an image capturing region by using ultrasonic waves by the displacement detector.
    • 公开了一种用于从超声波探头发射超声波脉冲的超声波图像捕获装置,其中元件被二维地布置到被摄体,接收被检体反射的超声波脉冲,并显示被检体的切片图像。 矢量多普勒处理器根据接收束形成器的孔径的方向来检测被摄体的运动,位移检测器基于矢量多普勒处理器的计算结果来检测被摄体中的对焦区域的运动。 扫描板设置部分通过使用位移检测器的超声波来确定图像捕获区域。
    • 5. 发明授权
    • Ultrasonographic device
    • 超声波装置
    • US08132462B2
    • 2012-03-13
    • US11996532
    • 2006-01-30
    • Takashi AzumaShinichiro UmemuraTatsuya NagataHiroshi FukudaShuntaro MachidaToshiyuki Mine
    • Takashi AzumaShinichiro UmemuraTatsuya NagataHiroshi FukudaShuntaro MachidaToshiyuki Mine
    • G01N29/34H02N1/08
    • A61B8/4483A61B8/08A61B8/4281B06B1/0292G01N29/2431G01S15/00
    • The receive sensitivity of an ultrasound array transducer structured with a diaphragm electro-acoustic transducer (101) being a basic unit is affected by change in a charge amount with elapsed time due to leakage or the like, which causes drift of the primary beam sensitivity, degradation in the acoustic SN ratio due to a rise in the acoustic noise level, and degradation in the directivity of an ultrasound beam. To addressing this problem, a charge controller (charge monitor 211) is provided to control charge in an electro-acoustic transducer (101). A charge monitoring section (102) monitors the change in the charge amount. When change in the charge amount is small, transmit sensitivity or receive sensitivity is calibrated by a controller (104) by, for example, multiplying a receive signal by a calibration coefficient corresponding to the change amount. Further, when the change in the charge amount is large, for example, charges can be re-emitted from a charge emitter (103).
    • 由作为基本单元的隔膜电声换能器(101)构成的超声波阵列换能器的接收灵敏度受到由于泄漏等引起的经过时间的电荷量的变化的影响,导致主光束灵敏度的漂移, 由于声学噪声水平的上升引起的声学SN比的降低,以及超声波束的方向性的劣化。 为了解决这个问题,提供一种充电控制器(充电监视器211)来控制电声换能器(101)中的电荷。 充电监视部(102)监视充电量的变化。 当充电量的变化小时,通过例如将接收信号乘以对应于变化量的校准系数,由控制器(104)校准发射灵敏度或接收灵敏度。 此外,当电荷量的变化大时,例如,电荷可以从电荷发射体(103)重新发射。
    • 6. 发明授权
    • Ultrasound imaging apparatus
    • 超声成像装置
    • US08118745B2
    • 2012-02-21
    • US12039367
    • 2008-02-28
    • Shinichiro UmemuraTakashi Azuma
    • Shinichiro UmemuraTakashi Azuma
    • A61B8/00
    • G01S15/8952G01S7/52046
    • With a natural number n, an ultrasound pulse having a center frequency of nf0 is transmitted, and an echo wave produced by the reflection at an acoustic-impedance interface within the object to be examined is received. Another ultrasound pulse having a center frequency of (n+1)f0 is transmitted, and, similarly, an echo wave produced by the reflection at an acoustic-impedance interface within the object to be examined is received. The received echo signal which has a center frequency of nf0 is raised to the power of (n+1) in a self-multiplication unit. Meanwhile, The received echo signal having a center frequency of (n+1)f0 is raised to the power of n in another self-multiplication unit. Each multiplication produces a signal having a center frequency of n(n+1)f0. A signed echo signal is obtained by a phase-sensitive detection between the two obtained signals.
    • 利用自然数n,发送具有nf0的中心频率的超声波脉冲,并且接收通过被检体内的声阻抗界面的反射而产生的回波。 发送具有(n + 1)f0的中心频率的另一个超声波脉冲,同样地,接收由被检查物体内的声阻抗界面的反射产生的回波。 接收到的中心频率为nf0的回波信号在自乘单元中提高到(n + 1)的功率。 同时,具有中心频率(n + 1)f0的接收回波信号在另一个自乘单元中提高到n的功率。 每个乘法产生具有中心频率n(n + 1)f0的信号。 通过两个获得的信号之间的相敏检测来获得有符号回波信号。
    • 8. 发明授权
    • Ultrasonic imaging apparatus
    • 超声波成像装置
    • US08388536B2
    • 2013-03-05
    • US12545975
    • 2009-08-24
    • Takashi AzumaShinichiro Umemura
    • Takashi AzumaShinichiro Umemura
    • A61B8/00
    • G01S15/8954G01S7/52022G01S7/52046G01S15/104G01S15/8959G01S15/8961
    • In an ultrasonic contrast imaging method in which signals specific to a contrast agent are extracted to form an image, imaging is performed with the following three well-balanced properties: frame rate, spatial resolution, and contrast-agent selectivity. A first chirp signal whose frequency increases with time and a second chirp signal obtained by inverting the first chirp signal about the time axis are used, and they are individually transmitted and received. A decoder having decode filters each adapted for a coded sequence, which is obtained when the chirp signal is decomposed into a pulse signal and a coded sequence, is provided. The decode filters are adapted for echo signals received in response to two chirp signals, respectively, and outputs of the two decode filters are input to a subtractor, whereby the difference therebetween is determined. Thus, contrast-agent selectivity is balanced with spatial resolution.
    • 在提取特定于造影剂的信号以形成图像的超声波对比度成像方法中,使用以下三个良好平衡的特性进行成像:帧速率,空间分辨率和造影剂选择性。 使用其频率随时间增加的第一啁啾信号和通过使关于时间轴的第一啁啾信号反相而获得的第二啁啾信号,并且它们被单独发送和接收。 一种具有解码滤波器的解码器,每个解码滤波器适用于当线性调频信号被分解为脉冲信号和编码序列时获得的编码序列。 解码滤波器适用于响应于两个啁啾信号而接收的回波信号,并且两个解码滤波器的输出被输入到减法器,从而确定它们之间的差异。 因此,造影剂选择性与空间分辨率平衡。
    • 9. 发明申请
    • ULTRASONIC IMAGING APPARATUS
    • 超声波成像设备
    • US20100280376A1
    • 2010-11-04
    • US12810327
    • 2008-08-28
    • Shinichiro UmemuraTakashi Azuma
    • Shinichiro UmemuraTakashi Azuma
    • A61B8/14
    • A61B8/481
    • An echo signal reflected from a microbubble contrast agent is discriminated from an echo signal generated upon reflection of a nonlinearly propagated transmission pulse from the body tissues without degradation of the axial resolution, by performing transmission/reception twice or less which would hardly decrease the imaging speed. By detecting a difference in phase of the second harmonic component based on the fundamental component included in the echo signal, an echo signal generated upon nonlinear reflection from a microbubble contrast agent is discriminated from an echo signal generated upon linear reflection of a nonlinearly propagated transmission pulse from the body tissues. The phase of the second harmonic component is detected through phase sensitive detection in which the square of the fundamental component is used as a reference wave. Concurrently, a pulse inversion method is used to extract the second harmonic component included in the original echo signal, whereby degradation of the axial resolution is prevented.
    • 从微泡造影剂反射的回波信号与通过非线性传播的来自身体组织的传播脉冲反射而产生的回波信号进行区分,而不会降低轴向分辨率,通过执行两次或更少的几乎不降低成像速度的发送/接收 。 通过基于包含在回波信号中的基波分量来检测二次谐波分量的相位差,从微泡造影剂的非线性反射产生的回波信号与在非线性传播的传输脉冲的线性反射时产生的回波信号 从身体组织。 通过使用基波分量的平方作为基准波的相位检测来检测二次谐波分量的相位。 同时,使用脉冲反转方法来提取包括在原始回波信号中的二次谐波分量,由此防止轴向分辨率的劣化。