会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Countermeasure against fault-based attack on RSA signature verification
    • 针对基于RSA签名验证的基于故障的攻击的对策
    • US20080104402A1
    • 2008-05-01
    • US11529857
    • 2006-09-28
    • Shay GueronJean-Pierre Seifert
    • Shay GueronJean-Pierre Seifert
    • H04L9/00G06F12/14H04L9/32G06F11/30
    • H04L9/004H04L9/302H04L9/3249H04L2209/20
    • Methods and apparatuses enable countermeasures to obstruct a fault-based attack on an authentication procedure. A digital message M, a signature S, and a modulus N are received, where the signature S is to sign the digital message M, and the modulus N is a public modulus for modular authentication operations. In one embodiment, the message and signature are compliant with the RSA algorithm. The signature S is validated, and after validation of the signature S, one or more N-based computations are performed that validate N. In one embodiment, N is validated prior to validating the signature S, and a double-validation countermeasure provides for re-validating N after validating S. In one embodiment, N is validated or re-validated in conjunction with validation of S. N can be validated in conjunction with validation of S through the use of computations with intermediate values derived from a trusted copy of N.
    • 方法和装置使对策能够阻碍对认证过程的基于故障的攻击。 接收数字消息M,签名S和模数N,其中签名S将对数字消息M进行签名,模数N是模块化认证操作的公开模数。 在一个实施例中,消息和签名符合RSA算法。 签名S被验证,并且在签名S的验证之后,执行验证N的一个或多个基于N的计算。在一个实施例中,N在验证签名S之前被验证,并且双重验证对策提供重新 在验证S之后验证N。在一个实施例中,N与S的验证一起被验证或重新验证.N可以通过使用从N的可信副本导出的中间值的计算结合来验证S。 。
    • 3. 发明授权
    • Method, apparatus, and instructions for safely storing secrets in system memory
    • 用于在系统存储器中安全存储秘密的方法,装置和说明
    • US09559848B2
    • 2017-01-31
    • US14467425
    • 2014-08-25
    • Shay Gueron
    • Shay Gueron
    • H04L9/32H04L9/08
    • G06F12/1408G06F21/72G06F21/73G06F21/74G06F2212/1052G06F2221/2107H04L9/0637H04L9/0894H04L9/3226H04L63/083
    • Embodiments of an invention for method, apparatus, and instructions for safely storing secrets in system memory are disclosed. In one embodiment, a processor includes a hardware key, an instruction unit, and an encryption unit. The instruction unit is to receive an encryption instruction and a compare instruction. The encryption instruction is to have a first plaintext input value. The compare instruction is to have a second plaintext input value. The encryption unit is to, in response to the encryption instruction, encrypt the first plaintext input value using the hardware key to generate a ciphertext value, and, in response to the compare instruction, decrypt the ciphertext value using the hardware key to generate a plaintext output value and compare the plaintext output value to the second plaintext input value.
    • 公开了用于在系统存储器中安全地存储秘密的方法,装置和指令的发明的实施例。 在一个实施例中,处理器包括硬件密钥,指令单元和加密单元。 指令单元接收加密指令和比较指令。 加密指令是具有第一个明文输入值。 比较指令是具有第二个明文输入值。 加密单元响应于加密指令,使用硬件密钥对第一明文输入值进行加密,以生成密文值,并且响应于比较指令,使用硬件密钥解密密文值以生成明文 输出值,并将明文输出值与第二个明文输入值进行比较。
    • 4. 发明申请
    • METHOD AND APPARATUS FOR PERFORMING BIG-INTEGER ARITHMETIC OPERATIONS
    • 用于执行大量整数算术运算的方法和装置
    • US20160179470A1
    • 2016-06-23
    • US14581973
    • 2014-12-23
    • Shay GueronVlad Krasnov
    • Shay GueronVlad Krasnov
    • G06F7/523G06F7/50
    • G06F7/523
    • An apparatus and method are described for performing big integer arithmetic operations. For example, one embodiment of a processor comprises: a first source register to store a first 256-bit integer operand; a second source register to store a second 256-bit integer operand; and multiplication logic comprising a set of multipliers and adders to perform a multiplication of the first and second 256-bit integer operands to generate a 512-bit result responsive to a 256-bit multiplication instruction, the multiplication logic to convert a radix representation of the first and second 256-bit integer operands from a first radix representation to a second radix representation selected based on a size of the multipliers and adders used to perform the multiplication and generate a result, and then to convert the result back to the first radix representation.
    • 描述了用于执行大整数运算的装置和方法。 例如,处理器的一个实施例包括:第一源寄存器,用于存储第一256位整数操作数; 第二个源寄存器,用于存储第二个256位整数操作数; 以及乘法逻辑,其包括一组乘法器和加法器,以执行第一和第二256位整数操作数的乘法,以响应于256位乘法指令产生512位结果,乘法逻辑转换 基于用于执行乘法并生成结果的乘法器和加法器的大小而选择的从第一基数表示到第二基数表示的第一和第二256位整数操作数,然后将结果转换回第一基数表示 。
    • 7. 发明授权
    • Method and apparatus for efficiently implementing the advanced encryption standard
    • 有效实施高级加密标准的方法和装置
    • US08923510B2
    • 2014-12-30
    • US11966658
    • 2007-12-28
    • Shay GueronMichael E. KounavisRam KrishnamurthySanu K. Mathew
    • Shay GueronMichael E. KounavisRam KrishnamurthySanu K. Mathew
    • H04L9/00G06F7/00
    • H04L9/0631G06F7/00G06F9/30007G06F9/30112G06F9/30145G06F9/30149G06F9/30196G06F9/3887G06F21/602H04L2209/34
    • Implementations of Advanced Encryption Standard (AES) encryption and decryption processes are disclosed. In one embodiment of S-box processing, a block of 16 byte values is converted, each byte value being converted from a polynomial representation in GF(256) to a polynomial representation in GF((22)4). Multiplicative inverse polynomial representations in GF((22)4) are computed for each of the corresponding polynomial representations in GF((22)4). Finally corresponding multiplicative inverse polynomial representations in GF((22)4) are converted and an affine transformation is applied to generate corresponding polynomial representations in GF(256). In an alternative embodiment of S-box processing, powers of the polynomial representations are computed and multiplied together in GF(256) to generate multiplicative inverse polynomial representations in GF(256). In an embodiment of inverse-columns-mixing, the 16 byte values are converted from a polynomial representation in GF(256) to a polynomial representation in GF((24)2). A four-by-four matrix is applied to the transformed polynomial representation in GF((24)2) to implement the inverse-columns-mixing.
    • 公开了高级加密标准(AES)加密和解密过程的实现。 在S盒处理的一个实施例中,转换16字节值的块,每个字节值从GF(256)中的多项式表示转换为GF((22)4)中的多项式表示。 对于GF((22)4)中的每个对应多项式表示,计算GF((22)4)中的乘法逆多项式表示。 最后,对GF((22)4)中的相应的乘法逆多项式表示进行转换,并应用仿射变换以在GF(256)中生成对应的多项式表示。 在S盒处理的替代实施例中,计算多项式表示的幂并在GF(256)中相乘,以在GF(256)中生成乘法逆多项式表示。 在反列混合的实施例中,将16字节值从GF(256)中的多项式表示转换为GF((24)2)中的多项式表示。 将四乘四矩阵应用于GF((24)2)中的变换多项式表示,以实现反列混合。