会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Vapor membrane dehumidification for air cycle environment control system
    • 空气循环环境控制系统的气膜除湿
    • US06705092B1
    • 2004-03-16
    • US09992671
    • 2001-11-14
    • Shaojun ZhouTim BirbeckMichel A. Jonqueres
    • Shaojun ZhouTim BirbeckMichel A. Jonqueres
    • F25D900
    • B01D53/22B01D53/268
    • The vapor membrane dehumidification device and method for air cycle environment control systems uses a semipermeable vapor membrane for water vapor, air separation. The vapor membrane has a high water to air permselectivity. When air containing water vapor is passed over or through the semipermeable fibers of the membrane countercurrently or crosscurrently to a purge air stream the water vapor may permeate through the fibers. Using a purge air stream of lower water vapor partial pressure relative to the feed moist air stream, the water vapor is moved to the purge air stream due to the partial pressure differential of water vapor and then expelled overboard with the purge air stream. The purge air stream can be replaced with any source of air internal or external to the aircraft such as air from the aircraft cabin.
    • 用于空气循环环境控制系统的蒸气膜除湿装置和方法使用半透膜蒸汽膜进行水蒸汽,空气分离。 蒸气膜具有高水对空气的选择性。 当含有水蒸汽的空气通过或通过膜的半透性纤维逆流或交叉流过吹扫空气流时,水蒸气可渗透通过纤维。 使用相对于进料湿空气流的较低水蒸气分压的吹扫空气流,由于水蒸汽的分压差,水蒸气被移动到吹扫空气流中,然后用吹扫空气流排出。 吹扫空气流可以用飞机内部或外部的任何空气源代替,例如来自飞机机舱的空气。
    • 4. 发明授权
    • Smart hybrid electric and bleed architecture
    • 智能混合电力和流体结构
    • US07970497B2
    • 2011-06-28
    • US11681686
    • 2007-03-02
    • Jean-Luc DerouineauWayne T. PearsonMichel A. Jonqueres
    • Jean-Luc DerouineauWayne T. PearsonMichel A. Jonqueres
    • G01C23/00
    • B64D13/06B64D2013/0618B64D2013/0644Y02T50/54Y02T50/56
    • An aircraft architecture may be designed to create an optimal balance between electric power and bleed power in order to match or improve current more electric architecture (MEA) performance while simplifying power extraction from the engines as well as simplifying the electrical system. Conventional aircraft architectures may use electric only ECS and cabin pressurization systems (so-called “no bleed” systems). Alternatively, older conventional aircraft may use strictly engine bleed air to provide power for ECS and cabin pressurization systems. The present invention, on the other hand, provides an architecture which may optimize the use of both engine bleed air and MEA designs to provide a system that may be simpler and potentially more reliable and available as compared to conventional aircraft architectures.
    • 飞机架构可以设计成在电力和泄放功率之间创建最佳平衡,以便匹配或改善当前更多的电气结构(MEA)性能,同时简化从发动机的功率提取以及简化电气系统。 传统的飞行器架构可以仅使用电动ECS和客舱加压系统(所谓的“无出血”系统)。 或者,较旧的常规飞行器可以严格地使用发动机排气来为ECS和客舱加压系统提供动力。 另一方面,本发明提供了一种架构,其可以优化发动机放气和MEA设计的使用,以提供与常规飞行器架构相比可以更简单并且可能更可靠和可用的系统。
    • 10. 发明授权
    • Air cycle environmental control system with fully energy regenerative
high pressure water condensation and extraction
    • 空气循环环境控制系统,具有完全能量再生高压水冷凝和萃取
    • US5924293A
    • 1999-07-20
    • US5912
    • 1998-01-12
    • Michel A. Jonqueres
    • Michel A. Jonqueres
    • B64D13/06F25B9/00
    • B64D13/06B64D2013/0648B64D2013/0662F05B2220/50F25B9/004Y02T50/56
    • An air cycle environmental control system regenerates energy through the provision of a reheater condenser that condenses water vapor from compressed air. The condensed water vapor is extracted by a water extractor to produce dehumidified air. A subcooler heat exchanger can receive the dehumidified air for further cooling, but while causing a minimal amount of condensation. A subcooled air from the subcooler heat exchanger is then reheated in the reheater condenser, with a resulting reheated air having absorbed a heat of sensible cooling and heat of condensation. The reheated air then passes into a first turbine which recovers a heat of sensible cooling and heat of condensation. The first turbine expands the air, which then flows through the subcooler heat exchanger and into a second turbine for additional recovery of a heat of sensible cooling and heat of condensation. The second turbine cools the air by expansion for delivery to an enclosure to be conditioned.
    • 空气循环环境控制系统通过设置冷凝来自压缩空气的水蒸汽的再热器冷凝器来再生能量。 冷凝水蒸汽由抽水机提取,产生除湿空气。 过冷却器热交换器可以接收除湿空气用于进一步冷却,但是同时产生最少量的冷凝。 然后将来自过冷却器热交换器的过冷空气在再热器冷凝器中再加热,由此产生的再加热空气吸收了明显的冷却和冷凝热。 然后,再加热的空气进入第一涡轮机,其恢复明显的冷却和冷凝热。 第一涡轮膨胀空气,然后空气流过过冷却器热交换器并进入第二涡轮机,以额外回收明显的冷却和冷凝热。 第二涡轮机通过膨胀来冷却空气以输送到要调节的外壳。