会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 再颁专利
    • Nonlinear electroseismic exploration
    • 非线性电地震勘探
    • USRE41829E1
    • 2010-10-19
    • US10912769
    • 2004-08-05
    • Scott C. HornbostelArthur H. ThompsonThomas C. HalseyRobert A. RaschkeClint A. Davis
    • Scott C. HornbostelArthur H. ThompsonThomas C. HalseyRobert A. RaschkeClint A. Davis
    • G01V1/00G01V11/00
    • G01V11/007G01V1/003G01V1/02G01V3/082Y02A90/342
    • A method for seismic exploration using nonlinear conversions between electromagnetic and seismic energy, with particular attention to the electromagnetic source waveform used. According to the invention, seismic returns from a source waveform are correlated with a reference waveform, with both waveforms custom designed to minimize both correlation side lobes and interference from linear electroseismic effects. A waveform element is selected which may be sequenced by a binary or similar digital code embodying the desired custom design to generate an input sweep with the needed depth penetration and noise suppression. Correlation of the seismic response with the reference waveform in a data processing step mathematically aggregates the seismic response from the input sweep into a single wavelet. Preferred binary digital codes include prescribed variations of maximal length shift-register sequences. Also, an apparatus for generating the desired waveforms.
    • 一种使用电磁和地震能量之间的非线性转换的地震勘探方法,特别注意所用的电磁源波形。 根据本发明,来自源波形的地震返回与参考波形相关联,两个波形定制设计以最小化相关旁瓣和来自线性电震效应的干扰。 选择波形元件,其可以通过体现所需定制设计的二进制或类似数字代码进行排序,以产生具有所需深度穿透和噪声抑制的输入扫描。 在数据处理步骤中,地震响应与参考波形的相关性将从输入扫描的地震响应数学地聚集成单个小波。 优选的二进制数字码包括最大长度移位寄存器序列的规定变化。 而且,一种用于产生所需波形的装置。
    • 5. 发明授权
    • Electrode configurations for suppression of electroseismic source noise
    • 用于抑制电震源噪声的电极结构
    • US07573780B2
    • 2009-08-11
    • US10583459
    • 2004-12-09
    • Arthur H. ThompsonScott C. Hornbostel
    • Arthur H. ThompsonScott C. Hornbostel
    • G01V11/00G01V3/02G01V1/00
    • G01V3/082G01V11/007G01V2210/6163
    • Method for survey design including configuring electrodes to reduce near-surface noise in the seismic response from an electroseismic survey of a subterranean formation. Different embodiments of the invention include (1) selective measurement of the surface noise to remove it from the data; (2) suppressing surface noise generation by reducing electric fields in the vicinity of some of the electrodes; (3) creating source signature differences between the near-surface seismic response and the deep response enabling the near surface response to be removed in data processing; (4) applying an external near-surface magnetic field to modulate the near-surface seismic response, enabling it to be removed in processing; and (5) constructing a partial Faraday cage to shield a near-surface region from fields generated by the electrodes.
    • 用于勘测设计的方法,包括配置电极,以减少地下地层地震勘测中的地震响应中的近地面噪声。 本发明的不同实施例包括(1)选择性地测量表面噪声以从数据中去除它; (2)通过减少一些电极附近的电场来抑制表面噪声产生; (3)在近地表地震响应和深度响应之间产生源签名差异,使得能够在数据处理中去除近表面响应; (4)施加外部近表面磁场以调制近地表地震响应,使其能够在处理中被去除; 和(5)构造部分法拉第笼以将近表面区域与电极产生的场屏蔽。
    • 6. 发明授权
    • Production of finely divided, low defect, stoichiometric titanium
disulfide
    • 生产细碎,低缺陷,化学计量的二硫化钛
    • US3980761A
    • 1976-09-14
    • US575999
    • 1975-05-09
    • Arthur H. ThompsonFred R. Gamble
    • Arthur H. ThompsonFred R. Gamble
    • C01G23/00
    • C01G23/007
    • Finely divided, stoichiometric titanium disulfide is prepared by directly reacting metallic titanium with less than stoichiometric amounts of elemental sulfur at a temperature between about 400.degree. and 1,000.degree.C. to form finely divided, nonstoichiometric, titanium-rich titanium disulfide. The titanium-rich titanium disulfide is then annealed at a temperature between about 400.degree. and about 600.degree.C. in an atmosphere having a sulfur partial pressure approximately equal to the sulfur partial pressure of stoichiometric titanium disulfide whereby the sulfur in the atmosphere reacts with the titanium-rich titanium disulfide to form a finely divided, stoichiometric titanium disulfide.
    • 二分之一的化学计量的二硫化钛通过在约400-1000℃的温度下使金属钛与化学计量不足的元素硫直接反应来制备,以形成细碎的,非化学计量的富含钛的二硫化钛。 然后在大约等于硫化学计量二硫化钛的硫分压的气氛中,在约400℃至约600℃之间的温度下将富含钛的二硫化钛退火,由此大气中的硫与 富含钛的二硫化钛形成细碎的化学计量的二硫化钛。
    • 7. 发明授权
    • Method for determining physical properties of a porous sample using
capillary pressure measurement
    • 使用毛细管压力测量来确定多孔样品的物理性质的方法
    • US4648261A
    • 1987-03-10
    • US797107
    • 1985-11-12
    • Arthur H. ThompsonAlan J. Katz
    • Arthur H. ThompsonAlan J. Katz
    • G01N15/08
    • G01N15/0886
    • A method for determining pore-dependent properties, such as electrical conductivity and absolute permeability, of a porous sample by use of capillary pressure measurements. Capillary pressure data are obtained by performing nonwetting fluid intrusion measurements on a sample. The lowest applied pressure at which the intruding fluid forms a connected path spanning the sample (the "threshold capillary pressure") is determined. The sample's conductivity or absolute permeability, or both, may be determined in a preferred embodiment from the characteristic pore diameter corresponding to the threshold capillary pressure, an other parameters extracted from the measured capillary pressure data. The invention does not require use of any arbitrary, empirically adjustable parameter to predict conductivity or permeability. The method may be performed to characterize small samples of porous rock such as those obtained during borehold drilling operations. The invention may also be performed to characterize other types of porous samples, such as porous catalysts or electrode materials used in battery technology.
    • 通过使用毛细管压力测量法确定多孔样品的孔依赖性质,例如导电性和绝对渗透性的方法。 通过对样品进行非润湿流体侵入测量来获得毛细管压力数据。 入侵流体形成跨越样品的连接路径的最低施加压力(“阈值毛细血管压力”)被确定。 样品的导电率或绝对渗透率,或两者都可以在优选实施方案中从对应于阈值毛细管压力的特征孔径确定,从测量的毛细管压力数据提取的其它参数。 本发明不需要使用任何任意的经验可调参数来预测电导率或渗透性。 可以执行该方法来表征多孔岩石的小样品,例如在钻孔操作期间获得的那些。 还可以执行本发明以表征其它类型的多孔样品,例如用于电池技术的多孔催化剂或电极材料。
    • 9. 发明授权
    • Method for determining subsurface electrical resistance using
electroseismic measurements
    • 使用电测量确定地下电阻的方法
    • US5486764A
    • 1996-01-23
    • US004959
    • 1993-01-15
    • Arthur H. ThompsonGrant A. Gist
    • Arthur H. ThompsonGrant A. Gist
    • G01V1/18G01V3/26G01V11/00G01V1/00G01V3/12G01V3/30
    • G01V3/265G01V1/18
    • A method and apparatus for estimating the earth's resistance (conductivity) as a function of depth using electroseismic prospecting (ESP) or inverse ESP techniques. Resistance is determined by the frequency-dependent attenuation of reflected EM signals which are produced by application of seismic signals to the earth. A seismic wave is generated by conventional means into the earth, and EM waves are generated back to the surface by different reflectors at different depth levels. This propagation attenuates the high frequencies preferentially. EM waves generated at lower depths are further attenuated relative to those waves generated at more shallow depths. The method and apparatus determines the difference in spectral content between the reflected signals from different horizons based on their relative attenuation and uses this difference as a direct measure of the conductivity between the horizons. Inverse ESP effects can also be used to generate EM waves into the earth and use reflected seismic waves to determine resistance as a function of depth.
    • 一种使用电地震勘探(ESP)或反ESP技术估算地球电阻(电导率)作为深度的函数的方法和装置。 电阻由通过将地震信号施加到地球产生的反射EM信号的频率依赖衰减来确定。 地震波通过常规手段产生到地球,并且EM波由不同深度级别的不同反射器产生回表面。 该传播优先地衰减高频。 在较深的深度处产生的EM波相对于在较浅深度处产生的那些波进一步衰减。 该方法和装置基于它们的相对衰减来确定来自不同层位的反射信号之间的光谱含量的差异,并将该差异用作水平线之间的电导率的直接测量。 反ESP效应也可用于产生EM波到地球,并使用反射的地震波来确定电阻作为深度的函数。
    • 10. 依法登记的发明
    • Marine geophysical prospecting system
    • 海洋地球物理勘探系统
    • USH1490H
    • 1995-09-05
    • US152972
    • 1993-11-15
    • Arthur H. ThompsonGrant A. GistJames A. Rice
    • Arthur H. ThompsonGrant A. GistJames A. Rice
    • G01V1/38G01V3/08G01V1/40
    • G01V11/007G01V1/3808G01V3/082
    • A marine geophysical prospecting system employs a hydrophone streamer cable containing electromagnetic field sensors, modified to be towed at a preselected distance above the sea floor by a first marine vessel senses electromagnetic energy from selected substrata beneath bodies of water. The voltage between sensors may be amplified by amplifiers in the cable or by amplifiers aboard the towing vessel. Optionally, a second similarly modified cable is preferably located above the near-bottom cable. Both cables may also contain hydrophones and/or accelerometers, as well as depth and position sensors. Optionally, a second vessel tows at least one conventional seismic source to create compressional energy which propagates downwardly through the water into the substrata beneath the body of water. At appropriate porous subsurface formations, the acoustic energy is converted to electromagnetic energy. This electromagnetic energy propagates upwardly and is detected by the electromagnetic sensors in the near-bottom cable; the second cable provides a reference array to suppress electromagnetic noise. Alternatively, the electromagnetic sensors in the near-bottom cable and a power source on the towing vessel may create an alternating or pulsed electromagnetic field in the sea floor. This electromagnetic field travels into the substrata beneath the water body and via conversion of the electromagnetic waves into seismic pressure waves at other appropriate porous subsea earth formations, generates a seismic wave. The resulting seismic wave is detected by the hydrophones and/or accelerometers in the cables.
    • 海洋地球物理勘探系统采用包含电磁场传感器的水听器流光缆,其被第一艘海洋船舶改造成在海底以上的预选距离处被牵引,感测来自水体下方的选定基底的电磁能。 传感器之间的电压可以由电缆中的放大器或牵引容器上的放大器放大。 可选地,第二类似改进的电缆优选地位于近底电缆之上。 两根电缆还可以包含水听器和/或加速度计,以及深度和位置传感器。 任选地,第二容器牵引至少一个传统的地震源以产生向下传播通过水进入水体下面的基底的压缩能量。 在适当的多孔地下地层,声能被转换为电磁能。 这种电磁能量向上传播并由近底电缆中的电磁传感器检测; 第二根电缆提供一个参考阵列来抑制电磁噪声。 或者,近底部电缆中的电磁传感器和牵引容器上的电源可在海底产生交替或脉冲的电磁场。 这种电磁场传播到水体下面的基底,并通过电磁波转换成其他适当的多孔海底地层的地震压力波,产生地震波。 所产生的地震波由电缆中的水听器和/或加速度计检测。