会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for determining subsurface electrical resistance using
electroseismic measurements
    • 使用电测量确定地下电阻的方法
    • US5486764A
    • 1996-01-23
    • US004959
    • 1993-01-15
    • Arthur H. ThompsonGrant A. Gist
    • Arthur H. ThompsonGrant A. Gist
    • G01V1/18G01V3/26G01V11/00G01V1/00G01V3/12G01V3/30
    • G01V3/265G01V1/18
    • A method and apparatus for estimating the earth's resistance (conductivity) as a function of depth using electroseismic prospecting (ESP) or inverse ESP techniques. Resistance is determined by the frequency-dependent attenuation of reflected EM signals which are produced by application of seismic signals to the earth. A seismic wave is generated by conventional means into the earth, and EM waves are generated back to the surface by different reflectors at different depth levels. This propagation attenuates the high frequencies preferentially. EM waves generated at lower depths are further attenuated relative to those waves generated at more shallow depths. The method and apparatus determines the difference in spectral content between the reflected signals from different horizons based on their relative attenuation and uses this difference as a direct measure of the conductivity between the horizons. Inverse ESP effects can also be used to generate EM waves into the earth and use reflected seismic waves to determine resistance as a function of depth.
    • 一种使用电地震勘探(ESP)或反ESP技术估算地球电阻(电导率)作为深度的函数的方法和装置。 电阻由通过将地震信号施加到地球产生的反射EM信号的频率依赖衰减来确定。 地震波通过常规手段产生到地球,并且EM波由不同深度级别的不同反射器产生回表面。 该传播优先地衰减高频。 在较深的深度处产生的EM波相对于在较浅深度处产生的那些波进一步衰减。 该方法和装置基于它们的相对衰减来确定来自不同层位的反射信号之间的光谱含量的差异,并将该差异用作水平线之间的电导率的直接测量。 反ESP效应也可用于产生EM波到地球,并使用反射的地震波来确定电阻作为深度的函数。
    • 2. 依法登记的发明
    • Marine geophysical prospecting system
    • 海洋地球物理勘探系统
    • USH1490H
    • 1995-09-05
    • US152972
    • 1993-11-15
    • Arthur H. ThompsonGrant A. GistJames A. Rice
    • Arthur H. ThompsonGrant A. GistJames A. Rice
    • G01V1/38G01V3/08G01V1/40
    • G01V11/007G01V1/3808G01V3/082
    • A marine geophysical prospecting system employs a hydrophone streamer cable containing electromagnetic field sensors, modified to be towed at a preselected distance above the sea floor by a first marine vessel senses electromagnetic energy from selected substrata beneath bodies of water. The voltage between sensors may be amplified by amplifiers in the cable or by amplifiers aboard the towing vessel. Optionally, a second similarly modified cable is preferably located above the near-bottom cable. Both cables may also contain hydrophones and/or accelerometers, as well as depth and position sensors. Optionally, a second vessel tows at least one conventional seismic source to create compressional energy which propagates downwardly through the water into the substrata beneath the body of water. At appropriate porous subsurface formations, the acoustic energy is converted to electromagnetic energy. This electromagnetic energy propagates upwardly and is detected by the electromagnetic sensors in the near-bottom cable; the second cable provides a reference array to suppress electromagnetic noise. Alternatively, the electromagnetic sensors in the near-bottom cable and a power source on the towing vessel may create an alternating or pulsed electromagnetic field in the sea floor. This electromagnetic field travels into the substrata beneath the water body and via conversion of the electromagnetic waves into seismic pressure waves at other appropriate porous subsea earth formations, generates a seismic wave. The resulting seismic wave is detected by the hydrophones and/or accelerometers in the cables.
    • 海洋地球物理勘探系统采用包含电磁场传感器的水听器流光缆,其被第一艘海洋船舶改造成在海底以上的预选距离处被牵引,感测来自水体下方的选定基底的电磁能。 传感器之间的电压可以由电缆中的放大器或牵引容器上的放大器放大。 可选地,第二类似改进的电缆优选地位于近底电缆之上。 两根电缆还可以包含水听器和/或加速度计,以及深度和位置传感器。 任选地,第二容器牵引至少一个传统的地震源以产生向下传播通过水进入水体下面的基底的压缩能量。 在适当的多孔地下地层,声能被转换为电磁能。 这种电磁能量向上传播并由近底电缆中的电磁传感器检测; 第二根电缆提供一个参考阵列来抑制电磁噪声。 或者,近底部电缆中的电磁传感器和牵引容器上的电源可在海底产生交替或脉冲的电磁场。 这种电磁场传播到水体下面的基底,并通过电磁波转换成其他适当的多孔海底地层的地震压力波,产生地震波。 所产生的地震波由电缆中的水听器和/或加速度计检测。
    • 3. 依法登记的发明
    • Method for using electromagnetic grounded antennas as directional
geophones
    • 使用电磁接地天线作为定向地震检波器的方法
    • USH1524H
    • 1996-04-02
    • US4953
    • 1993-01-15
    • Arthur H. ThompsonGrant A. GistJames A. Rice
    • Arthur H. ThompsonGrant A. GistJames A. Rice
    • G01V1/18G01V3/08G01V3/12
    • G01V11/007G01V1/181G01V3/082
    • A method of seismic prospecting using electromagnetic grounded antennas to detect electromagnetic waves that are produced from acoustic waves in the earth's formation. Seismic waves reflected by a formation in the earth are converted into electromagnetic waves in the vicinity of the antenna according to the streaming potential theory. The antenna has two electrodes which detect the horizontal component of the electromagnetic waves, thus providing additional seismic information that is not readily available using standard geophones. Antennas are also not subject to coupling problems and thus provide more accurate information than traditional geophones. For example, using multicomponent detection, all three components of the seismic pressure gradient can be detected. In addition, using geophones and antennas directly provides a method of separating source and receiver-generated static corrections for more effective stacking of seismic data and allows computation of seismic signal velocity through the low-velocity layer.
    • 一种使用电磁接地天线的地震勘探方法,用于检测地球形成中由声波产生的电磁波。 根据流动电位理论,由地层中的地层反射的地震波被转换成天线附近的电磁波。 天线具有检测电磁波的水平分量的两个电极,从而提供使用标准地震检波器不容易获得的额外的地震信息。 天线也不会受到耦合问题的影响,因此提供比传统地震检波器更准确的信息。 例如,使用多组分检测,可以检测到地震压力梯度的所有三个分量。 此外,使用地震检波器和天线直接提供了一种分离源和接收机产生的静态校正的方法,以更有效地堆叠地震数据,并允许通过低速层计算地震信号速度。
    • 4. 发明申请
    • Inversion of 4D Seismic Data
    • 4D地震数据反演
    • US20100142323A1
    • 2010-06-10
    • US12593475
    • 2008-03-24
    • Dez ChuGrant A. Gist
    • Dez ChuGrant A. Gist
    • G01V1/28G01V1/30
    • G01V11/00G01V2210/665
    • The invention is a method for inferring the saturation and pressure change of a reservoir by combining the information from 4D (time-lapse) seismic and time lag data volumes (7) derived from the 4D seismic, well logs (4), and reservoir simulation results (when simulator results are available) and featuring one or more 4D well ties (1) for a quantitative 4D interpretation. The inventive method uses model-based inversion incorporating rock physics (2) at well locations (5), and is statistical-based (6) away from wells. The method thus allows integration (8) of rock physics model and reservoir simulation and honors 4D seismic change.
    • 本发明是通过组合来自4D(延时)地震的信息和从4D地震,测井(4)和储层模拟得到的时滞数据体积(7)来推断储层的饱和和压力变化的方法 结果(当模拟器结果可用时),并具有一个或多个4D井架(1)用于定量4D解释。 本发明的方法使用基于岩石物理学(2)的基于模型的反演在井位置(5),并且与井相比基于统计学(6)。 因此,该方法允许岩石物理模型和油藏模拟的综合(8)和荣誉4D地震变化。
    • 5. 发明授权
    • Inversion of 4D seismic data
    • 4D地震数据的反演
    • US08908474B2
    • 2014-12-09
    • US12593475
    • 2008-03-24
    • Dez ChuGrant A. Gist
    • Dez ChuGrant A. Gist
    • G01V1/28G01V11/00
    • G01V11/00G01V2210/665
    • The invention is a method for inferring the saturation and pressure change of a reservoir by combining the information from 4D (time-lapse) seismic and time lag data volumes (7) derived from the 4D seismic, well logs (4), and reservoir simulation results (when simulator results are available) and featuring one or more 4D well ties (1) for a quantitative 4D interpretation. The inventive method uses model-based inversion incorporating rock physics (2) at well locations (5), and is statistical-based (6) away from wells. The method thus allows integration (8) of rock physics model and reservoir simulation and honors 4D seismic change.
    • 本发明是通过组合来自4D(延时)地震的信息和从4D地震,测井(4)和储层模拟得到的时滞数据体积(7)来推断储层的饱和和压力变化的方法 结果(当模拟器结果可用时),并具有一个或多个4D井架(1)用于定量4D解释。 本发明的方法使用基于岩石物理学(2)的基于模型的反演在井位置(5),并且与井相比基于统计学(6)。 因此,该方法允许岩石物理模型和油藏模拟的综合(8)和荣誉4D地震变化。
    • 6. 发明授权
    • System and method for performing time-lapse monitor surverying using sparse monitor data
    • 使用稀疏监视数据执行延时监视器的系统和方法
    • US08724429B2
    • 2014-05-13
    • US13127133
    • 2009-12-04
    • Richard T. HouckGrant A. GistDachang Li
    • Richard T. HouckGrant A. GistDachang Li
    • G01V1/00G01V1/28
    • G01V1/282G01V1/308G01V2210/612
    • Techniques are disclosed for performing time-lapse monitor surveys with sparsely sampled monitor data sets. An accurate 3D representation (e.g., image) of a target area (e.g., a hydrocarbon bearing subsurface reservoir) is constructed (12) using the sparsely sampled monitor data set (11). The sparsely sampled monitor data set may be so limited that it alone is insufficient to generate an accurate 3D representation of the target area, but accuracy is enabled through use of certain external information (14). The external information may be one or more alternative predicted models (25) that are representative of different predictions regarding how the target area may change over a lapse of time. The alternative models may, for example, reflect differences in permeability of at least a portion of the target area. The sparsely sampled monitor data set may then be processed to determine (23) which of the alternative models is representative of the target area.
    • 公开了用于执行具有稀疏采样监视数据集的时间延迟监视器调查的技术。 使用稀疏采样的监视数据集(11)构建(12)目标区域(例如,含烃地下储层)的精确3D表示(例如,图像)。 稀疏采样的监视器数据集可以被限制为仅仅不足以产生目标区域的精确3D表示,但是通过使用某些外部信息(14)能够实现准确性。 外部信息可以是一个或多个替代预测模型(25),其代表关于目标区域可能随时间流逝而改变的不同预测。 替代模型可以例如反映目标区域的至少一部分的渗透性的差异。 然后可以处理稀疏采样的监视数据集,以确定(23)替代模型中的哪一个代表目标区域。
    • 7. 发明申请
    • System and method For Performing Time-Lapse Monitor Surverying Using Sparse Monitor Data
    • 使用稀疏监视器数据执行延时监视的系统和方法
    • US20120014217A1
    • 2012-01-19
    • US13127133
    • 2009-12-04
    • Richard T. HouckGrant A. GistDachang Li
    • Richard T. HouckGrant A. GistDachang Li
    • G01V1/00
    • G01V1/282G01V1/308G01V2210/612
    • Techniques are disclosed for performing time-lapse monitor surveys with sparsely sampled monitor data sets. An accurate 3D representation (e.g., image) of a target area (e.g., a hydrocarbon bearing subsurface reservoir) is constructed (12) using the sparsely sampled monitor data set (11). The sparsely sampled monitor data set may be so limited that it alone is insufficient to generate an accurate 3D representation of the target area, but accuracy is enabled through use of certain external information (14). The external information may be one or more alternative predicted models (25) that are representative of different predictions regarding how the target area may change over a lapse of time. The alternative models may, for example, reflect differences in permeability of at least a portion of the target area. The sparsely sampled monitor data set may then be processed to determine (23) which of the alternative models is representative of the target area.
    • 公开了用于执行具有稀疏采样监视数据集的延时监视器调查的技术。 使用稀疏采样的监视数据集(11)构建(12)目标区域(例如,含烃地下储层)的精确3D表示(例如,图像)。 稀疏采样的监视器数据集可以被限制为仅仅不足以产生目标区域的精确3D表示,但是通过使用某些外部信息(14)能够实现准确性。 外部信息可以是一个或多个替代预测模型(25),其代表关于目标区域可能随时间流逝而改变的不同预测。 替代模型可以例如反映目标区域的至少一部分的渗透性的差异。 然后可以处理稀疏采样的监视数据集,以确定(23)替代模型中的哪一个代表目标区域。