会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Fuel gas production system for fuel cells
    • 燃料电池燃气生产系统
    • US06656617B2
    • 2003-12-02
    • US09758387
    • 2001-01-12
    • Satoshi AoyamaHiromichi SatoToshihide NakataSatoshi Iguchi
    • Satoshi AoyamaHiromichi SatoToshihide NakataSatoshi Iguchi
    • H01M804
    • H01M8/2483C01B3/384C01B3/48C01B3/505C01B2203/0233C01B2203/0283C01B2203/041C01B2203/044C01B2203/047C01B2203/066C01B2203/1076H01M8/0258H01M8/0267H01M8/04223H01M8/04225H01M8/04268H01M8/0631H01M8/0662H01M8/0668H01M8/0687
    • The technique of the present invention enhances the separation efficiency and the production efficiency of hydrogen in a hydrogen production system for fuel cells, while reducing the size of the whole fuel gas production system. In the fuel gas production system of the present invention, a hydrocarbon compound is subjected to multi-step chemical processes including a reforming reaction, a shift reaction, and a CO oxidation to give a hydrogen-rich fuel gas. Gaseous hydrogen produced through the reforming reaction is separated by a hydrogen separation membrane having selective permeability to hydrogen. The residual gas after the separation of hydrogen has a low hydrogen partial pressure and undergoes the shift reaction at the accelerated rate. The hydrogen-rich processed gas obtained through the shift reaction and the CO oxidation joins with the separated hydrogen and is supplied to fuel cells. A purge gas for carrying out the hydrogen is introduced into a separation unit of hydrogen, in order to lower the hydrogen partial pressure and thereby enhance the separation efficiency of hydrogen. The residual gas after the separation of hydrogen undergoes combustion and is subsequently used as the purge gas
    • 本发明的技术提高了燃料电池的氢生产系统中的氢的分离效率和生产效率,同时减小了整个燃料气体生产系统的尺寸。 在本发明的燃料气体生产系统中,烃化合物进行包括重整反应,转移反应和CO氧化在内的多步化学处理,得到富氢燃料气体。 通过重整反应产生的气态氢气通过对氢具有选择性渗透性的氢分离膜分离。 氢分离后的残留气体具有低的氢分压,并以加速速率进行转化反应。 通过转移反应和CO氧化获得的富氢处理气体与分离的氢气连接并供应到燃料电池。 用于进行氢气的吹扫气体被引入到氢的分离单元中,以便降低氢气分压,从而提高氢的分离效率。 氢气分离后的残余气体经历燃烧,随后用作净化气体
    • 8. 发明授权
    • Fuel cell manufacturing method and fuel cell
    • 燃料电池制造方法和燃料电池
    • US07611795B2
    • 2009-11-03
    • US10581394
    • 2004-11-29
    • Satoshi AoyamaNaoki ItoHiromichi Sato
    • Satoshi AoyamaNaoki ItoHiromichi Sato
    • H01M4/86H01M4/00H01M4/02B05D5/12
    • H01M8/04216H01M4/881H01M4/8817H01M4/8867H01M4/94H01M8/1004H01M2300/0091Y02P70/56
    • The manufacturing method of the invention is applied to manufacture a unit fuel cell 20, which has a hydrogen-permeable metal layer 22 of a hydrogen-permeable metal and an electrolyte layer 21 that is located on the hydrogen-permeable metal layer 22 and has proton conductivity. The method first forms the electrolyte layer 21 on the hydrogen-permeable metal layer 22, and subsequently forms an electrically conductive cathode 24 on the electrolyte layer 21 to block off an electrical connection between the cathode 24 and the hydrogen-permeable metal layer 22. The method releases Pd toward the electrolyte layer 21 in a direction substantially perpendicular to the electrolyte layer 21 to form a Pd layer as the cathode 24 that is thinner than the electrolyte layer 21. This arrangement of the invention effective prevents a potential short circuit, for example, between the cathode and the hydrogen-permeable metal layer, in the fuel cell, due to pores present in the electrolyte layer.
    • 本发明的制造方法适用于制造具有透氢性金属的透氢性金属层22和位于透氢性金属层22上且具有质子的电解质层21的单位燃料电池20 电导率。 该方法首先在氢可渗透金属层22上形成电解质层21,随后在电解质层21上形成导电阴极24,以阻断阴极24与透氢金属层22之间的电连接。 方法在基本上垂直于电解质层21的方向上向电解质层21释放Pd,以形成比电解质层21薄的作为阴极24的Pd层。本发明的这种布置有效地防止了电位短路,例如 在阴极和透氢性金属层之间,在燃料电池中,由于存在于电解质层中的孔。