会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • System and method for producing electro-optic components integrable with
silicon-on-sapphire circuits
    • 用于生产可与蓝宝石蓝宝石电路集成的电光元件的系统和方法
    • US5242707A
    • 1993-09-07
    • US632033
    • 1990-12-21
    • Sadik C. EsenerSing H. LeeSubramania KrishnakumarVolkan H. OzguzChi Fan
    • Sadik C. EsenerSing H. LeeSubramania KrishnakumarVolkan H. OzguzChi Fan
    • C23C14/08C23C14/50G02F1/055H01L21/84
    • C23C14/505C23C14/088G02F1/0551H01L21/84
    • A system and method are disclosed for producing electro-optic components with transparent, ferroelectric PLZT (perovskite) film characteristics, without lead diffusion. In particular, the fabrication of PLZT-on-sapphire electro-optic components for devices such as spatial light modulators, integrated infrared detectors, and optoelectronic integrated circuits is disclosed, permitting integration of such devices with semiconductor devices having the same substrate, such as silicon-on-sapphire circuits. The system comprises a PLZT film deposition apparatus, a silicon dioxide deposition apparatus, an annealing apparatus, and an optional plasma etching apparatus. During film deposition, material from a PLZT target (source) of suitable (9/65/35) composition is deposited on the substrate and is epitaxially grown on the R-plane (1102) of the substrate, forming a non-ferroelectric, pyrochloric film. The substrate and film are then placed in a silicon dioxide (SiO.sub.2) deposition chamber where SiO.sub.2 is deposited as an insulating layer covering (capping) the film. The substrate, with film and SiO.sub.2 layer, is then placed in an annealing apparatus, at a selected temperature above 550.degree. C. for a selected period of time, to transform the non-ferroelectric, pyrochloric film into a ferroelectric, perovskite film of (9/65/35) composition. The SiO.sub.2 layer may then be removed by conventional etching.
    • 公开了一种用于生产具有透明的铁电PLZT(钙钛矿)膜特性的电光元件而不引线扩散的系统和方法。 特别地,公开了用于诸如空间光调制器,集成红外检测器和光电集成电路的器件的PLZT-蓝宝石电光元件的制造,允许这样的器件与具有相同衬底的半导体器件(诸如硅 - 蓝宝石电路。 该系统包括PLZT膜沉积设备,二氧化硅沉积设备,退火设备和可选的等离子体蚀刻设备。 在膜沉积期间,将来自适合(9/65/35)组成的PLZT靶(源)的材料沉积在衬底上并在衬底的R平面(1102)上外延生长,形成非铁电,高氯酸 电影。 然后将衬底和膜放置在二氧化硅(SiO 2)沉积室中,其中SiO 2沉积为覆盖(封盖)膜的绝缘层。 然后将具有膜和SiO 2层的衬底在选定的温度高于550℃的退火设备中放置一段选定的时间,以将非铁电的高氯酸盐膜转变成铁电体的钙钛矿膜( 9/65/35)组成。 然后可以通过常规蚀刻去除SiO 2层。
    • 4. 发明授权
    • Dual-scale topology optoelectronic matrix algebraic processing system
    • 双尺度拓扑光电矩阵代数处理系统
    • US5321639A
    • 1994-06-14
    • US846277
    • 1992-03-02
    • Ashok V. KrishnamoorthyGary C. MarsdenJoseph E. FordSadik C. Esener
    • Ashok V. KrishnamoorthyGary C. MarsdenJoseph E. FordSadik C. Esener
    • G06E1/02G06N3/067G06E3/00
    • G06N3/0675G06E1/02
    • A parallel architecture matrix algebraic processing system exhibits patterns of arrayed (i) light transmitters and (ii) light receivers that are identical, but at differing scales. Planar arrays of one or more optoelectronic processors--principally semiconductor chips or chip arrays--having both computational and light input/output capabilities optically communicate from one plane to the next through free-space space-invariant optical data distributions--principally lenses and computer-generated holograms--having both replication and distribution capabilities. Each optoelectronic processor, or OP, consists of a number of arrayed optoelectronic processing elements, or OPEs. The OPEs, in turn, typically consist of a number of optoelectronic sub-processing units are preferably electrically interconnected in a tree-based structure, preferably an H-tree. Leaf units include typically one light detector plus local memory, logic circuitry, and electrical input/output. Fanning units typically include local memory, logic circuitry, and electrical input/output. A root unit typically includes electrically-connected local memory, logic circuitry, electrical input/output, and a light transmitter. Vector results of algebraic computations and combinations are flexibly performable in the units of each OPE, and variously optically distributable to other OPEs in successive OPs. The versatile algebraic vector manipulations and vector distributions support primitive functions such as intrinsic and extrinsic vector outer products; operations such as vector-matrix multiplication; and complex systems such as neural networks, fuzzy logic and relational databases. A system of .gtoreq.10.sup.3 fully optically communicating OPEs achieves capacities of 10.sup.6 -10.sup.8 interconnects, and processing speeds of 10.sup.12 interconnects/second.
    • 并行架构矩阵代数处理系统呈现阵列(i)光发射器和(ii)相同但不同尺度的光接收器的图案。 具有计算和光输入/输出能力的一个或多个光电子处理器的平面阵列主要是具有计算和光输入/输出能力的光学通信通过自由空间空间不变的光学数据分布从一个平面到下一个光学通信,主要是透镜和计算机生成的 全息图 - 具有复制和分发功能。 每个光电处理器或OP由多个阵列的光电处理元件或OPE组成。 OPE通常由多个光电子处理单元组成,优选在基于树的结构中,优选地H-tree电互连。 叶单元通常包括一个光检测器加本地存储器,逻辑电路和电输入/输出。 扇形单元通常包括本地存储器,逻辑电路和电输入/输出。 根单元通常包括电连接的本地存储器,逻辑电路,电输入/输出和光发射器。 代数计算和组合的向量结果可以在每个OPE的单元中灵活地执行,并且可以在各个OP中以各种光学方式分配给其他OPE。 通用代数向量操纵和向量分布支持原始函数,如内在和外在矢量外积; 诸如矢量矩阵乘法的运算; 和复杂系统,如神经网络,模糊逻辑和关系数据库。 全面光通信OPE的系统实现106-108互连的容量,以及1012互连/秒的处理速度。
    • 7. 发明授权
    • Precise fabrication of polymer microlens arrays
    • 聚合物微透镜阵列的精确制造
    • US07771630B2
    • 2010-08-10
    • US09792236
    • 2001-02-23
    • Daniel M. HartmannSadik C. EsenerOsman Kibar
    • Daniel M. HartmannSadik C. EsenerOsman Kibar
    • B29D11/00
    • G02B3/0018B29D11/00365B82Y10/00B82Y40/00G02B3/0012G02B3/0056G03F7/0002Y10T156/10
    • High performance microlens arrays are fabricated by (i) depositing liquid on the hydrophilic domains of substrates of patterned wettability by either (a) condensing liquid on the domains or (b) withdrawing the substrate from a liquid solution and (ii) optionally curing the liquid to form solid microlenses. The f-number (f#) of formed microlenses is controlled by adjusting liquid viscosity, surface tension, density, and index of refraction, as well as the surface free energies of the hydrophobic and hydrophilic areas. The f-number of formed microlenses is also adjustable by controlling substrate dipping angle and withdrawal speed, the array fill factor and the number of dip coats used. At an optimum withdrawal speed f# is minimized and array uniformity is maximized. At this optimum, arrays of f/3.48 microlenses were fabricated using one dip-coat with uniformity better than Δf/f˜±3.8% while multiple dip-coats permit production of f/1.38 microlens arrays and uniformity better than Δf/f˜±5.9%. Average f#s are reproducible to within 3.5%. The method is adaptable and extendible to precision parallel fabrication of (i) microlenses precisely sized, aligned and spatially positioned to various small light sources and optical fiber ends, (ii) conductive bump bonds on substrate pads, and (iii) conductive bonds between corresponding domains on separate perpendicular substrates, all of which are self-aligned.
    • 通过以下步骤制造高性能微透镜阵列:(i)通过(a)将液体冷凝在畴上,或(b)从液体溶液中取出基底和(ii)任选地固化液体,使液体沉积在具有图案化润湿性的基底的亲水区域上 以形成固体微透镜。 通过调节液体粘度,表面张力,密度和折射率以及疏水和亲水区域的表面自由能来控制形成的微透镜的f数(f#)。 形成的微透镜的f数也可以通过控制衬底浸渍角度和抽出速度,阵列填充因子和所用浸涂层的数量来调节。 在最佳退出速度f#被最小化并且阵列均匀性最大化。 在这个最佳条件下,使用一种比Dgr; f / f〜±3.8%更好的浸渍涂层制造f / 3.48微透镜阵列,而多个浸涂层允许生产f / 1.38微透镜阵列,并且均匀度优于&Dgr; f /f〜cooper5.9%。 平均f#s可重复到3.5%以内。 该方法适用于和可扩展以精确并行制造(i)精确尺寸,对准和空间定位于各种小光源和光纤端的微透镜,(ii)衬底焊盘上的导电凸块接合,以及(iii)相应的导电键 分离的垂直基底上的结构域都是自对准的。