会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Apparatus and method for improved optical detection of particles in fluid
    • 用于改善流体中颗粒的光学检测的装置和方法
    • US08270781B2
    • 2012-09-18
    • US12091414
    • 2006-10-27
    • Yu-Hwa LoVictor Jie LienChun Hao Randy Chen
    • Yu-Hwa LoVictor Jie LienChun Hao Randy Chen
    • G02B6/00
    • G01N15/1429B01L3/502707B01L3/502715B01L2200/0668B01L2300/0654B01L2300/0816B01L2400/0424B01L2400/0487G01N15/1434G01N15/1484G01N21/05G01N21/49G01N21/53G01N21/6408G01N2021/0346Y10T29/49124
    • A number of fluidic-photonic devices for allowing optical detection, systems employing such devices, and related methods of operation and fabrication of such devices are disclosed herein. In at least some embodiments, the devices can serve as flow cytometry devices and/or employ microfluidic channels. Also, in at least some embodiments, the devices are fluidic-photonic integrated circuit (FPIC) devices that employ both fluidic channels and one or more waveguides capable of receiving and/or delivering light, and that can be fabricated using polymeric materials. The fluidic-photonic devices in at least some embodiments are capable of functionality such as on-chip excitation, time-of-flight measurement, and can experience enhanced fluorescence detection sensitivity. In at least some embodiments, the devices employ detection waveguides that are joined by way of a waveguide demultiplexer. In additional embodiments, a variety of techniques can be used to process information received via the waveguides, including an iterative cross-correlation process.
    • 本文公开了许多用于允许光学检测的流体光子学装置,采用这种装置的系统以及这些装置的相关操作和制造方法。 在至少一些实施方案中,装置可以用作流式细胞术装置和/或使用微流体通道。 此外,在至少一些实施例中,装置是采用流体通道和能够接收和/或传送光的一个或多个波导的流体 - 光子学集成电路(FPIC)装置,并且可以使用聚合材料制造。 至少一些实施例中的流体光子学装置能够具有诸如片上激发,飞行时间测量等功能,并且可以体验增强的荧光检测灵敏度。 在至少一些实施例中,器件采用通过波导解复用器连接的检测波导。 在另外的实施例中,可以使用各种技术来处理经由波导接收的信息,包括迭代互相关过程。
    • 9. 发明授权
    • Planar hetero-interface photodetector
    • 平面异质界面光电探测器
    • US06384462B1
    • 2002-05-07
    • US09730692
    • 2000-12-06
    • Alexandre PauchardYu-Hwa Lo
    • Alexandre PauchardYu-Hwa Lo
    • H01L31072
    • H01L31/1075H01L31/02327H01L31/1844H01L31/1852Y02E10/544
    • A planar avalanche photodetector (APD) is fabricated by forming a, for example, InGaAs absorption layer on a p+-type semiconductor substrate, such as InP, and wafer-bonding to the absorption layer a second p-type semiconductor, such as Si, to form a multiplication layer. The layer thickness of the multiplication layer is substantially identical to that of the absorption layer. A region in a top surface of the p-type Si multiplication layer is doped n+-type to form a carrier separation region and a high electric field in the multiplication region. The APD can further include a guard-ring to reduce leakage currents as well as a resonant mirror structure to provide to wavelength selectivity. The planar geometry furthermore favors the integration of high-speed electronic circuits on the same substrate to fabricate monolithic optoelectronic transceivers.
    • 通过在诸如InP的p +型半导体衬底上形成例如InGaAs吸收层并且与吸收层晶片接合来制造平面雪崩光电检测器(APD),第二p型半导体例如Si, 以形成乘法层。 倍增层的层厚与吸收层基本相同。 p型Si倍增层的上表面的区域掺杂n +型,以在乘法区域中形成载流子分离区域和高电场。 APD还可以包括保护环以减少泄漏电流以及谐振反射镜结构以提供波长选择性。 平面几何形状还有利于将高速电子电路集成在同一衬底上以制造单片光电收发器。
    • 10. 发明授权
    • Compliant universal substrate for epitaxial growth
    • 符合通用衬底的外延生长
    • US5981400A
    • 1999-11-09
    • US929871
    • 1997-09-18
    • Yu-Hwa Lo
    • Yu-Hwa Lo
    • C30B25/18H01L21/20H01L21/00
    • C30B25/18H01L21/2007
    • Compliant universal (CU) substrates and techniques for forming the same facilitate growth of epitaxial layers comprised of materials which are highly lattice mismatched with the substrate material. The CU substrates employ very thin (e.g., 1-20 nm or less) substrate layers which are loosely bonded to a thick bulk material base layer. Because of the loose bonding, the bonding energy of the atoms in the thin substrate layer is reduced, thus greatly increasing the flexibility of the thin substrate layer. This enables the substrate layer to absorb strain or stress imparted during the growth of lattice mismatched epitaxial layers, thus avoiding the formation of defects in the epitaxial layers. The "loose" bonding of the thin substrate layer to the base layer can be achieved in any of a number of ways. First, the thin substrate layer can be bonded at an angle relative to the base layer so that screw dislocations form which provide the desired reduction in bonding energy and increase in flexibility. Other techniques rely on reducing the top surface area of the base layer to reduce the bonding energy. This can be accomplished by making the base material porous at the top surface, or by patterning or roughing the top surface of the base layer.
    • 合适的通用(CU)衬底和用于形成其的技术有助于由与衬底材料高度晶格失配的材料组成的外延层的生长。 CU衬底使用非常薄(例如,1-20nm或更少)衬底层,其松散地结合到厚的体积材料基底层。 由于松散的结合,薄的衬底层中的原子的键合能被减小,从而大大提高了薄衬底层的柔性。 这使得衬底层能够吸收在晶格失配的外延层的生长期间施加的应变或应力,从而避免在外延层中形成缺陷。 薄衬底层与基层的“松散”结合可以以多种方式中的任一种来实现。 首先,可以相对于基底层以一定角度粘结薄的基底层,从而形成提供期望的键合能量降低和增加柔性的螺旋位错。 其他技术依赖于减小基层的顶表面积以降低结合能。 这可以通过使基材在顶表面多孔,或通过图案化或粗糙化基层的顶表面来实现。