会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Pattern recognition alignment system
    • 模式识别对准系统
    • US5621813A
    • 1997-04-15
    • US558613
    • 1995-11-14
    • Robert L. BrownHwan J. JeongDavid A. MarkleDavid S. PanRichard B. WardMark S. Wanta
    • Robert L. BrownHwan J. JeongDavid A. MarkleDavid S. PanRichard B. WardMark S. Wanta
    • G03F7/20G03F9/00G06T7/00G06K9/00
    • G06T7/0028G03F7/70G03F9/70G06T2207/30148G06T2207/30204
    • A substrate alignment and exposure system is disclosed The alignment is performed by capturing an image of the substrate with a pattern recognition system, determining the offset from the alignment and moving the substrate relative to the reticle to be in alignment. A first optical alignment system which captures an image of a position of the substrate off of the primary axis of the exposure optics is used to perform pre-alignment. A second optical alignment system captures an image of the reticle and the substrate through the lens of the exposure optics. The pattern recognition system recognizes the alignment keys on the reticle, alignment targets on the substrate, and computes their positions and displacement from alignment. The relative alignment can be direct or inferred. Any angular and translational misalignment is calculated. The pattern recognition system then moves the substrate to be in alignment with the reticle. In the present invention, any arbitrary feature on the reticle and substrate, including device features or specialized alignment keys and targets used by other exposure systems, can be recognized by the pattern recognition system and used for alignment.
    • 公开了衬底对准和曝光系统。通过用图案识别系统捕获衬底的图像来执行对准,确定对准的偏移并且相对于掩模版移动衬底以进行对准。 使用第一光学对准系统,其捕获基板离开曝光光学元件的主轴的位置的图像,以执行预对准。 第二光学对准系统通过曝光光学元件的透镜捕获掩模版和基板的图像。 模式识别系统识别光罩上的对准键,基板上的对准目标,并计算它们的位置和位移与对准。 相对对齐可以直接或推断。 计算任何角度和平移误差。 然后,图案识别系统移动衬底以与掩模版对准。 在本发明中,掩模版和衬底上包括装置特征或其它曝光系统所使用的特定对准键和目标物的任意特征可由图案识别系统识别并用于对准。
    • 2. 发明授权
    • High-resolution, common-path interferometric imaging systems and methods
    • 高分辨率,共轨干涉成像系统和方法
    • US08559014B2
    • 2013-10-15
    • US12924244
    • 2010-09-23
    • Hwan J. JeongDavid A. Markle
    • Hwan J. JeongDavid A. Markle
    • G01B9/02
    • G02B27/58A61B6/5282
    • High-resolution, common-path interferometric imaging systems and methods are described, wherein a light source generates and directs light toward a sample from different directions. An optical imaging system collects the resultant scattered and unscattered components. A variable phase shifting system adjusts the relative phase of the components. The interfered components are sensed by an image sensing system. The process is repeated multiple times with different phase shifts to form corresponding multiple electronic signals representative of raw sample images, which are processed by a signal processor to form a processed image. Multiple processed images, each corresponding to a different illumination azimuth angle, are combined to extend the system resolution.
    • 描述了高分辨率,公共路径干涉成像系统和方法,其中光源从不同的方向产生并指向样品。 光学成像系统收集所得的散射和未散射的部件。 可变相移系统调整组件的相对相位。 受干扰的部件由图像感测系统感测。 该过程以不同的相移重复多次以形成表示原始样本图像的对应的多个电子信号,其由信号处理器处理以形成经处理的图像。 组合多个处理后的图像,每个对应于不同的照明方位角,以扩展系统分辨率。
    • 4. 发明授权
    • Scanning microlithographic apparatus and method for projecting a large field-of-view image on a substrate
    • 用于在基板上投影大视场图像的扫描微光刻设备和方法
    • US06381077B1
    • 2002-04-30
    • US09543609
    • 2000-04-05
    • Hwan J. JeongDavid A. Markle
    • Hwan J. JeongDavid A. Markle
    • G03B2742
    • G02B17/008G02B17/08G03F7/70225G03F7/70358
    • A simple −1X, catadioptric projection relay system (e.g., a modified Wynne-Dyson relay) is combined with a linear scanning and object and image indexing systems to provide good imagery over a useful field which is two or more times wider than the field size of the projection system and arbitrarily long. The projection system has opposed and parallel object and image planes and produces an image in which object and image vectors in one direction are parallel and in a normal direction are opposed. The reticle and substrate are clamped and scanned together in the parallel direction and are indexed in the normal direction by equal and opposite amounts between scans. An example shows how a 2.5 micron resolution, i-line projection system with a 300 mm wide field could be used to expose a 550 mm wide substrate In two scans to yield a very high throughput.
    • 一个简单的-1X,反射折射投影中继系统(例如,修改后的Wynne-Dyson继电器)与线性扫描和物体和图像索引系统相结合,可以在比场尺寸宽两倍或更多倍的有用领域提供良好的图像 的投影系统和任意长。 投影系统具有相对和平行的对象和图像平面,并产生一个方向上的物体和图像矢量平行并且在正常方向相反的图像。 将掩模版和基板沿着平行方向夹持并扫描在一起,并且在正常方向上通过扫描之间相等和相反的量进行索引。 一个例子展示了如何使用宽度为300 mm的2.5 mm分辨率的i线投影系统来曝光550 mm宽的基板。在两次扫描中,可以获得非常高的吞吐量。
    • 5. 发明授权
    • Point diffraction interferometer and pin mirror for use therewith
    • 点衍射干涉仪和针镜
    • US5822066A
    • 1998-10-13
    • US806663
    • 1997-02-26
    • Hwan J. JeongDavid A. Markle
    • Hwan J. JeongDavid A. Markle
    • G01B9/02G01B11/255
    • G01B11/255G01B9/02024G01B9/02039G01B9/02049G01B9/02065G01B9/02074G01B2290/70
    • This invention includes a pin mirror arranged to receive light, preferably from a laser source. The pin mirror has a reflective surface that diffracts and reflects the received light to generate a diffraction-limited spherical wavefront. The pin mirror can reflect the wavefront in a predetermined direction by angling the pin mirror's reflective surface with respect to the direction of travel of the light incident to the pin mirror. The capability of the pin mirror to generate a diffraction-limited spherical wavefront and to direct the wavefront in a predetermined direction provides the capability to test objects or systems with relatively high numerical apertures, and yet allows for a reduction in the number and criticality of the properties of optical elements that would otherwise be required in an interferometer. The invention also includes several embodiments of interferometers that incorporate one or more pin mirrors to generate probe and reference beams used to generate an interference pattern indicative of one or more characteristics of a test object or system.
    • 本发明包括布置成接收来自激光源的光的针镜。 针镜具有衍射和反射接收的光以产生衍射极限球面波前的反射表面。 针镜可以相对于入射到针镜的光的行进方向通过使针镜的反射表面倾斜来在预定方向上反射波前。 针反射镜产生衍射极限球面波前并沿预定方向引导波阵面的能力提供了测试具有相对较高数值孔径的物体或系统的能力,并且允许降低数字和数值孔径的数量和关键性 否则在干涉仪中需要的光学元件的特性。 本发明还包括干涉仪的几个实施例,其包括一个或多个针镜以产生用于产生指示测试对象或系统的一个或多个特性的干涉图案的探针和参考光束。
    • 7. 发明授权
    • Apparatus having line source of radiant energy for exposing a substrate
    • 具有用于暴露衬底的辐射能的线源的设备
    • US06531681B1
    • 2003-03-11
    • US09536869
    • 2000-03-27
    • David A. MarkleAndrew M. HawrylukHwan J. Jeong
    • David A. MarkleAndrew M. HawrylukHwan J. Jeong
    • B23K2606
    • G03F7/70558B23K26/0738G03F7/70225G03F7/70391H01L21/67115
    • Radiant energy line source(s) (e.g., laser diode array) and anamorphic relay receiving radiant energy therefrom and directing that energy to a substrate in a relatively uniform line image. The line image is scanned with respect to the substrate for treatment thereof. Good uniformity is provided even when the line source is uneven. Optionally, delimiting aperture(s) located in the anamorphic relay focal plane and a subsequent imaging relay are includeable to permit substrate exposure in strips with boundaries between adjacent strips within scribe lines between circuits. An anamorphic relay focal plane mask with a predetermined pattern can be used to define portions of the substrate to be treated with the substrate and mask scanning motions synchronized with each other. Control of source output, and position/speed of the substrate, with respect to the line image, allows uniform dose and required magnitude over the substrate.
    • 辐射能量线源(例如,激光二极管阵列)和变形继电器从其接收辐射能,并将能量引导到相对均匀的线图像中的衬底。 相对于基板扫描线图像以进行处理。 即使线源不均匀,也能提供良好的均匀性。 可选地,定位在变形继电器焦平面中的孔径和随后的成像继电器可包括允许基板暴露在条带之间,其中在电路之间的划线内的相邻条带之间具有边界。 可以使用具有预定图案的变形继电器焦平面掩模来限定待用基板的部分,并且掩模扫描运动彼此同步。 源极输出的控制和基板的位置/速度相对于线图像,允许在衬底上均匀的剂量和所需的幅度。
    • 8. 发明授权
    • Focusing technique suitable for use with an unpatterned specular
substrate
    • US5266790A
    • 1993-11-30
    • US993547
    • 1992-12-21
    • David A. MarkleGerald J. AlonzoHwan J. Jeong
    • David A. MarkleGerald J. AlonzoHwan J. Jeong
    • G02B7/28G03F7/20G03F9/00G01J1/20
    • G03F7/70225G02B7/28G03F9/7026G03F9/7049
    • A microlithographic stepper, employing a Half-Field Dyson projection optical system, achieves focusing of an image of a first-layer reticle pattern on a completely unpatterned reflective wafer surface by including a repetitive diffraction pattern on the reticle which has a configuration in which a particular ordinal diffraction order is normally missing. In response to being simultaneously illuminated with each of two incident monochromatic beams of light, diffraction orders generated by the repetitive diffraction pattern are imaged on the reflective wafer surface and then reflected back to and reimaged on the repetitive diffraction pattern on the reticle. Diffraction orders generated on the first encounter with the repetitive diffraction pattern generate light in the originally missing ordinal diffraction order on the second encounter. If more than one diffraction order from the first encounter contribute toward generating this missing-order light, then the light intensity of the originally missing order will depend on focus position of the wafer. Best focus will generate either maximum or minimum light intensity of the originally missing order. Using a single wavelength, a single repetitive diffraction pattern period, and a single incidence angle, provides a limited unambiguous focus range. However, by using a second wavelength, a second repetitive diffraction pattern period, or a second incidence angle, the unambiguous focus range is substantially extended. Each of these separate incident illuminating beams gives rise to its own set of reflected diffraction-order light. Thus, each of the two monochromatic beams of light gives rise to reflected diffraction-order light from each of two sets that occupy the position of the normally-missing particular ordinal diffraction order. Detection of interference maxima and minima in the intensity of this light, derived either by moving the wafer surface through in-focus or by electro-optic means responsive to this light being orthogonally polarized, permits best focus to be achieved.
    • 10. 发明申请
    • High-resolution, common-path interferometric imaging systems and methods
    • 高分辨率,共轨干涉成像系统和方法
    • US20110075928A1
    • 2011-03-31
    • US12924244
    • 2010-09-23
    • Hwan J. JeongDavid A. Markle
    • Hwan J. JeongDavid A. Markle
    • G06K9/00G01B9/02G06K9/40
    • G02B27/58A61B6/5282
    • High-resolution, common-path interferometric imaging systems and methods are described, wherein a light source generates and directs light toward a sample. An optical imaging system collects the resultant substantially scattered component and substantially unscattered component. A variable phase shifting system is used to adjust the relative phase of the scattered and unscattered light components. The interfered components are sensed by an image sensing system. The process is repeated multiple times with different phase shifts to form corresponding multiple electronic signals representative of raw sample images. The raw sample images are then processed by a signal processor to form a processed image, where each image pixel has an amplitude and a phase. This picture can be displayed directly using some combination of brightness and color to represent amplitude and phase. Multiple processed images, each corresponding to a different illumination azimuth angle, can be combined to substantially extend the resolution. The technique permits the optical aberrations in the imaging system to be measured and removed from each picture. The addition of phase and amplitude to microscopic images is expected to extend both the depth and breadth of the many applications of optical microscopy.
    • 描述了高分辨率,共轨干涉成像系统和方法,其中光源产生并将光引导到样品。 光学成像系统收集所得到的基本上分散的部件和基本上未散射的部件。 可变相移系统用于调节散射和未散射的光分量的相对相位。 受干扰的部件由图像感测系统感测。 该过程以不同的相移重复多次,以形成代表原始样本图像的相应的多个电子信号。 然后,原始样本图像由信号处理器处理以形成经处理的图像,其中每个图像像素具有振幅和相位。 该图片可以直接使用亮度和颜色的一些组合来显示振幅和相位。 可以组合各自对应于不同照明方位角的多个经处理的图像,以基本上扩展分辨率。 该技术允许从每个图像测量和去除成像系统中的光学像差。 相位和幅度对显微镜图像的添加有望延长光学显微镜的许多应用的深度和宽度。