会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Retinal prosthesis with a new configuration
    • 视网膜假体具有新配置
    • US20070055336A1
    • 2007-03-08
    • US11523965
    • 2006-09-19
    • Robert GreenbergMatthew McMahonJames LittleKelly McClureBrian MechNeil TalbotJordan Neysmith
    • Robert GreenbergMatthew McMahonJames LittleKelly McClureBrian MechNeil TalbotJordan Neysmith
    • A61N1/04
    • A61N1/36046A61N1/0543A61N1/37223H05K1/028H05K1/0281H05K1/118H05K3/0014H05K3/28H05K2201/0133H05K2201/09018H05K2201/09145H05K2201/09909H05K2201/2009H05K2203/1105H05K2203/1476H05K2203/302Y10T29/49158
    • Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, and cortical stimulation, and many related purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. By applying the right amount of heat to a completed array, a curve can be induced. With a thermoplastic polymer it may be further advantageous to repeatedly heat the flexible circuit in multiple molds, each with a decreasing radius. Further, it is advantageous to add material along the edges. It is further advantageous to provide a fold or twist in the flexible circuit array. Additional material may be added inside and outside the fold to promote a good seal with tissue.
    • 聚合物材料可用作神经刺激的电极阵列体。 它们特别有用于视网膜刺激以产生人造视觉,耳蜗刺激以产生人造听觉和皮质刺激以及许多相关目的。 通过电极阵列对视网膜或其他神经组织施加的压力是至关重要的。 太小的压力会导致电阻增加以及电场分散。 太大的压力可能会阻止血液流动。 通常的柔性电路制造技术通常需要使柔性电路电极阵列平坦。 由于神经组织几乎从不平坦,平面阵列必然会施加不均匀的压力。 此外,柔性电路聚合物阵列的边缘可以是尖锐的并切割精细的神经组织。 通过将适量的热应用于完整的阵列,可以引起曲线。 对于热塑性聚合物,可以进一步有利的是在多个模具中反复加热柔性电路,每个模具具有减小的半径。 此外,沿着边缘添加材料是有利的。 在柔性电路阵列中提供折叠或扭曲是更有利的。 可以在折叠内部和外部添加附加材料以促进与组织的良好密封。
    • 4. 发明申请
    • Method and Apparatus for Visual Neural Stimulation
    • 视觉神经刺激的方法和装置
    • US20080045826A1
    • 2008-02-21
    • US11923837
    • 2007-10-25
    • Robert GreenbergMatthew McMahonChris SekirnjakE.J. Chichilnisky
    • Robert GreenbergMatthew McMahonChris SekirnjakE.J. Chichilnisky
    • A61N1/04
    • A61N1/36046Y10T29/49117
    • Existing epiretinal implants for the blind are designed to electrically stimulate large groups of surviving retinal neurons using a small number of electrodes with diameters of several hundred μm. To increase the spatial resolution of artificial sight, electrodes much smaller than those currently in use are desirable. In this study we stimulated and recorded ganglion cells in isolated pieces of rat, guinea pig, and monkey retina. We utilized micro-fabricated hexagonal arrays of 61 platinum disk electrodes with diameters between 6 and 25 μm, spaced 60 μm apart. Charge-balanced current pulses evoked one or two spikes at latencies as short as 0.2 ms, and typically only one or a few recorded ganglion cells were stimulated. Application of several synaptic blockers did not abolish the evoked responses, implying direct activation of ganglion cells. Threshold charge densities were typically below 0.1 mC/cm2 for a pulse duration of 100 μs, corresponding to charge thresholds of less than 100 pC. Stimulation remained effective after several hours and at high frequencies. To demonstrate that closely spaced electrodes can elicit independent ganglion cell responses, we utilized the multi-electrode array to stimulate several nearby ganglion cells simultaneously. From these data we conclude that electrical stimulation of mammalian retina with small-diameter electrode arrays is achievable and can provide high temporal and spatial precision at low charge densities. We review previous epiretinal stimulation studies and discuss our results in the context of 32 other publications, comparing threshold parameters and safety limits.
    • 用于盲人的现有的视网膜植入物被设计为使用直径为几百马姆的少量电极来电刺激大组存活的视网膜神经元。 为了增加人造视觉的空间分辨率,期望比目前使用的电极小得多的电极。 在这项研究中,我们在孤立的大鼠,豚鼠和猴视网膜碎片中刺激并记录神经节细胞。 我们利用直径在6到25毫米之间的间隔60毫米的61铂铂电极的微制六边形阵列。 电荷平衡电流脉冲在延迟时间短达0.2 ms时诱发一个或两个尖峰,通常只有一个或几个记录的神经节细胞被刺激。 几种突触阻滞剂的应用并没有消除诱发反应,意味着神经节细胞的直接活化。 阈值电荷密度通常低于0.1 mC / cm2,脉冲持续时间为100 mus,对应于小于100 pC的电荷阈值。 刺激在几个小时后和高频下仍然有效。 为了证明紧密间隔的电极可以引起独立的神经节细胞反应,我们利用多电极阵列同时刺激几个附近的神经节细胞。 从这些数据,我们得出结论,可以实现具有小直径电极阵列的哺乳动物视网膜的电刺激,并且可以在低电荷密度下提供高的时间和空间精度。 我们回顾以前的epiretinal刺激研究,并讨论我们的结果在32个其他出版物,比较阈值参数和安全限制。
    • 8. 发明申请
    • Method and apparatus for visual neural stimulation
    • 视觉神经刺激的方法和装置
    • US20070198066A1
    • 2007-08-23
    • US11592804
    • 2006-11-03
    • Robert GreenbergMatthew McMahonChris SekirnjakE.J. Chichilnisky
    • Robert GreenbergMatthew McMahonChris SekirnjakE.J. Chichilnisky
    • A61N1/18
    • A61N1/36046Y10T29/49117
    • Existing epiretinal implants for the blind are designed to electrically stimulate large groups of surviving retinal neurons using a small number of electrodes with diameters of several hundred μm. To increase the spatial resolution of artificial sight, electrodes much smaller than those currently in use are desirable. In this study we stimulated and recorded ganglion cells in isolated pieces of rat, guinea pig, and monkey retina. We utilized micro-fabricated hexagonal arrays of 61 platinum disk electrodes with diameters between 6 and 25 μm, spaced 60 μm apart. Charge-balanced current pulses evoked one or two spikes at latencies as short as 0.2 ms, and typically only one or a few recorded ganglion cells were stimulated. Application of several synaptic blockers did not abolish the evoked responses, implying direct activation of ganglion cells. Threshold charge densities were typically below 0.1 mC/cm2 for a pulse duration of 100 μs, corresponding to charge thresholds of less than 100 pC. Stimulation remained effective after several hours and at high frequencies. To demonstrate that closely spaced electrodes can elicit independent ganglion cell responses, we utilized the multi-electrode array to stimulate several nearby ganglion cells simultaneously. From these data we conclude that electrical stimulation of mammalian retina with small-diameter electrode arrays is achievable and can provide high temporal and spatial precision at low charge densities. We review previous epiretinal stimulation studies and discuss our results in the context of 32 other publications, comparing threshold parameters and safety limits.
    • 用于盲人的现有的视网膜植入物被设计为使用直径为几百马姆的少量电极来电刺激大组存活的视网膜神经元。 为了增加人造视觉的空间分辨率,期望比目前使用的电极小得多的电极。 在这项研究中,我们在孤立的大鼠,豚鼠和猴视网膜碎片中刺激并记录神经节细胞。 我们利用直径在6到25毫米之间的间隔60毫米的61铂铂电极的微制六边形阵列。 电荷平衡电流脉冲在延迟时间短达0.2 ms时诱发一个或两个尖峰,通常只有一个或几个记录的神经节细胞被刺激。 几种突触阻滞剂的应用并没有消除诱发反应,意味着神经节细胞的直接活化。 阈值电荷密度通常低于0.1 mC / cm2,脉冲持续时间为100 mus,对应于小于100 pC的电荷阈值。 刺激在几个小时后和高频下仍然有效。 为了证明紧密间隔的电极可以引起独立的神经节细胞反应,我们利用多电极阵列同时刺激几个附近的神经节细胞。 从这些数据,我们得出结论,可以实现具有小直径电极阵列的哺乳动物视网膜的电刺激,并且可以在低电荷密度下提供高的时间和空间精度。 我们回顾以前的epiretinal刺激研究,并讨论我们的结果在32个其他出版物,比较阈值参数和安全限制。
    • 10. 发明申请
    • Sub-threshold Stimulation to Precondition Neurons for Supra-threshold Stimulation
    • 超阈值刺激的阈值阈值刺激对前提条件的神经元
    • US20080046031A1
    • 2008-02-21
    • US11924313
    • 2007-10-25
    • Robert GreenbergMatthew McMahon
    • Robert GreenbergMatthew McMahon
    • A61N1/05
    • A61N1/36046A61N1/0543
    • In order to generate the smallest phosphenes possible, it is advantageous to selectively stimulate smaller cells. By hyperpolarizing the somas of the large cells selectively with sub-threshold anodic ‘pre-pulse’ stimuli (making them more difficult to stimulate) and then selectively depolarize the smaller cells one can selectively stimulate smaller cells. Alternatively, one can hyperpolarize the dendrites of the cells with larger dendritic fields by applying sub-threshold anodic currents on surrounding electrodes and then depolarizing the smaller cells in the center. Further, one can manipulate the phases of an individual biphasic wave to affect selective stimulation resulting in more focal responses. It is possible to increase resolution with the ‘pre-pulse’ described above. One can also effect resolution by modifying the pulse order of the cathodic and anodic phases. Further, one can isolate the effect of the phases by separating them in time (long inter-phase interval) or by making one of the phases long and low amplitude—always keeping equal total charge for the two phases. As an example, one can preferentially stimulate smaller ganglion cells by providing a longer sub-threshold anodic pulse balanced with a shorter supra-threshold cathodic pulse. Preferentially stimulating the smaller ganglion cells will allow stimulation of different brightness levels while maintaining high spatial resolution.
    • 为了产生可能的最小磷光体,有利的是选择性地刺激较小的细胞。 通过使用亚阈值阳极“预脉冲”刺激(使它们更难刺激)选择性地超极化大细胞的体细胞,然后选择性去极化较小的细胞,可以选择性地刺激较小的细胞。 或者,可以通过在周围电极上施加亚阈值阳极电流然后使中心的较小细胞去极化来超极化具有较大树枝状场的细胞的树突。 此外,人们可以操纵单个双相波的相位以影响选择性刺激,导致更多的局部反应。 可以用上述'预脉冲'来提高分辨率。 也可以通过改变阴极和阳极相的脉冲顺序来影响分辨率。 此外,可以通过在时间上(长的相间间隔)将它们分离,或者通过使相位中的一个长和低振幅 - 总是保持两相的总电荷来隔离相的影响。 作为示例,可以通过提供用较短的超阈值阴极脉冲平衡的较长的亚阈值阳极脉冲来优先地刺激较小的神经节细胞。 优先刺激较小的神经节细胞将允许刺激不同的亮度水平,同时保持高的空间分辨率。