会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Water soluble carbon nanotubes
    • 水溶性碳纳米管
    • US08592612B1
    • 2013-11-26
    • US13087306
    • 2011-04-14
    • Robert C. HaddonIrina KalininaElena Bekyarova
    • Robert C. HaddonIrina KalininaElena Bekyarova
    • C07D307/12
    • C07D307/12
    • Embodiments of the present disclosure present systems and methods for the synthesis of carbon nanotubes (CNTs) functionalized with mono-terminated, protected polyethylene glycol (PEG). As compared with bi-functional PEG, mono-terminated PEG the PEG-THFF oligomer has only one reaction site. The use of mono-terminated PEG may enhance the solubility of CNTs functionalized with mono-terminated PEG by inhibiting cross-linking between nanotubes and leads to a dramatic increase in aqueous solubility. In an example, single-walled carbon nanotubes functionalized with PEG having a tetrahydrofurfuryl (THFF) terminal group (SWNT-PEG-THFF) is found to disperse in water by ultrasonication and forms stable viscous dispersions at concentrations as high as about 9 g/L. This result exceeds the solubility of a previously reported SWNT-PEG graft copolymer, approximately 6 g/L, by more than 30%.
    • 本公开的实施方案提供用于合成用单末端,保护的聚乙二醇(PEG)官能化的碳纳米管(CNT)的系统和方法。 与双功能PEG相比,单封端PEG PEG-THFF低聚物只有一个反应位点。 使用单封端PEG可以通过抑制纳米管之间的交联来增强用单末端PEG功能化的CNT的溶解度,并导致水溶性的显着增加。 在一个实例中,发现用具有四氢糠基(THFF)端基(SWNT-PEG-THFF)的PEG官能化的单壁碳纳米管通过超声波分散在水中,并以高达约9g / L的浓度形成稳定的粘稠分散体 。 该结果超过先前报道的约6g / L的SWNT-PEG接枝共聚物的溶解度超过30%。
    • 8. 发明授权
    • Continuous extraction technique for the purification of carbon nanomaterials
    • 用于碳纳米材料净化的连续提取技术
    • US08449858B2
    • 2013-05-28
    • US12813239
    • 2010-06-10
    • Robert C. Haddon
    • Robert C. Haddon
    • C09C1/56
    • B82Y30/00B03D3/00B82Y40/00C01B32/15
    • Systems and methods for the purification of carbon nanotubes (CNTs) by continuous liquid extraction are disclosed. Carbon nanotubes are introduced to a flow of liquid that enables the separation of CNTs from impurities due to differences in the dispersibility of the CNTs and the impurities within the liquid. Examples of such impurities may include amorphous carbon, graphitic nanoparticles, and metal containing nanoparticles. The continuous extraction process may be performed in one or more stages, where one or more of extraction parameters may be varied between the stages of the continuous extraction process in order to effect removal of selected impurities from the CNTs. The extraction parameters may include, but are not limited to, the extraction liquid, the flow rate of the extraction liquid, the agitation of the liquid, and the pH of the liquid, and may be varied, depending on the impurity to be removed from the CNTs.
    • 公开了通过连续液体提取来净化碳纳米管(CNT)的系统和方法。 将碳纳米管引入到液体流中,由于CNT和液体中的杂质的分散性的差异,能够将CNT与杂质分离。 这种杂质的实例可以包括无定形碳,石墨纳米颗粒和含金属的纳米颗粒。 连续提取过程可以在一个或多个阶段中进行,其中一个或多个提取参数可以在连续提取过程的阶段之间变化,以便从CNT中去除所选择的杂质。 提取参数可以包括但不限于提取液体,萃取液的流速,液体的搅拌和液体的pH值,并且可以根据要除去的杂质而变化 碳纳米管。
    • 9. 发明申请
    • CHEMICAL MODULATION OF ELECTRONIC AND MAGNETIC PROPERTIES OF GRAPHENE
    • 石墨的电子和磁性的化学调制
    • US20110068290A1
    • 2011-03-24
    • US12994678
    • 2009-05-29
    • Robert C. HaddonMikhail E. ItkisPalanisamy RameshElena BekyarovaSakhrat KhizroevJeongmin Hong
    • Robert C. HaddonMikhail E. ItkisPalanisamy RameshElena BekyarovaSakhrat KhizroevJeongmin Hong
    • H01F1/42C07C63/42C07C39/225C07C22/04C07C15/20H01B1/12C07C17/02C07C45/27C07C49/603C01B31/00C07D303/04C25B3/00B82Y30/00B82Y40/00
    • G01N33/6893C12Q1/6881C12Q2600/158G01N33/5088G01N2800/085G01N2800/122G01N2800/324G01N2800/347H01F1/405
    • Compounds, compositions, systems and methods for the chemical and electrochemical modification of the electronic structure of graphene and especially epitaxial graphene (EG) are presented. Beneficially, such systems and methods allow the large-scale fabrication of electronic EG devices. Vigorous oxidative conditions may allow substantially complete removal of the EG carbon atoms and the generation of insulating regions; such processing is equivalent to that which is currently used in the semiconductor industry to lithographically etch or oxidize silicon and thereby define the physical features and electronic structure of the devices. However graphene offers an excellent opportunity for controlled modification of the hybridization of the carbon atoms from sp2 to sp3 states by chemical addition of organic functional groups. We show that such chemistries offer opportunities far beyond those currently employed in the semiconductor industry for control of the local electronic structure of the graphene sheet and do not require the physical removal of areas of graphene or its oxidation, in order to generate the full complement of electronic devices necessary to produce functional electronic circuitry. Selective saturation of the π-bonds opens a band gap in the graphene electronic structure which results in a semiconducting or insulating form of graphene, while allowing the insertion of new functionality with the possibility of 3-D electronic architectures. Beneficially, these techniques allow for large-scale fabrication of electronic EG devices and integrated circuits, as they allow the generation of wires (interconnects), semiconductors (transistors), dielectrics, and insulators.
    • 介绍了石墨烯,特别是外延石墨烯(EG)的电子结构的化学和电化学改性的化合物,组合物,体系和方法。 有利的是,这种系统和方法允许电子EG装置的大规模制造。 强烈的氧化条件可以允许基本上完全除去EG碳原子和产生绝缘区域; 这种处理相当于目前在半导体工业中用于光刻蚀刻或氧化硅的方法,从而限定了器件的物理特征和电子结构。 然而,石墨烯提供了通过化学添加有机官能团来控制改变sp2到sp3状态的碳原子的杂化的极好的机会。 我们表明,这些化学品提供的机会远远超出目前在半导体工业中使用的机会,用于控制石墨烯片的局部电子结构,并且不需要物理去除石墨烯的区域或其氧化,以产生完整的 生产功能电子电路所需的电子设备。 石墨烯电子结构的选择饱和打开了石墨烯电子结构中的带隙,导致石墨烯的半导体或绝缘形式,同时允许以3-D电子架构的可能性插入新功能。 有利的是,这些技术允许电子EG器件和集成电路的大规模制造,因为它们允许生成导线(互连),半导体(晶体管),电介质和绝缘体。