会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明授权
    • Emission control device for internal combustion engine
    • 内燃机排放控制装置
    • US06230489B1
    • 2001-05-15
    • US09323698
    • 1999-06-01
    • Mikio TsuzukiKimiyoshi NishizawaRitsuo SatoNaoki Kachi
    • Mikio TsuzukiKimiyoshi NishizawaRitsuo SatoNaoki Kachi
    • F01N310
    • B01D53/9454F01N3/0814F01N3/0835F01N3/0871F01N3/2828F01N13/009Y02A50/2324Y02T10/22
    • A plurality of catalysts (7), (9) are disposed in an engine exhaust passage (13). At least the catalyst disposed downstream of these catalysts comprises a multi-layered catalyst (7) which is covered in a catalyst layer (24a) on the surface and an HC absorbent layer (24b) on an inner layer with respect to a catalyst carrier (23). A ratio of the downstream multi-layered catalyst (7) (catalyst heat capacity/catalyst surface area) is set so that it is greater than the same ratio for the upstream catalyst (9). In this way, temperature increase in the upstream catalyst (9) is advanced, the temperature gradient in the downstream catalyst (7) is increased and temperature rises in the HC absorbent layer are reduced. As a result, the HC emission period approximates the activation period of the catalyst layer (24a). In this way, during low temperature vehicle operation, it is possible to synchronize the timing of HC emission by the HC absorbent layer and catalyst activation and therefore to achieve extreme reductions in HC emitted to the outside atmosphere.
    • 多个催化剂(7),(9)设置在发动机排气通道(13)中。 至少设置在这些催化剂下游的催化剂包括覆盖在表面上的催化剂层(24a)中的多层催化剂(7)和相对于催化剂载体的内层上的HC吸收层(24b) 23)。 下游多层催化剂(7)(催化剂热容量/催化剂表面积)的比例被设定为大于上游催化剂(9)的相同比例。 这样,上游催化剂(9)的温度上升,下游催化剂​​(7)的温度梯度上升,HC吸收层的温度上升降低。 结果,HC排放周期近似于催化剂层(24a)的活化时间。 以这种方式,在低温车辆操作期间,可以使HC吸收层的HC排放的定时和催化剂的活化同步,从而实现对外部气氛的HC的极度降低。
    • 9. 发明授权
    • Engine air-fuel ratio controller
    • 发动机空燃比控制器
    • US6014962A
    • 2000-01-18
    • US58301
    • 1998-04-10
    • Ritsuo SatoKimiyoshi Nishizawa
    • Ritsuo SatoKimiyoshi Nishizawa
    • F02D45/00F02D41/04F02D41/14
    • F02D41/2454F02D41/2441
    • Feedback correction of an air-fuel ratio is performed, a feedback correction amount is learned, and applied as a learning value on the next occasion that control is performed. It is determined whether or not an engine is in a high load state, and when the high load state continues for a predetermined time, the feedback correction amount is fixed at a predetermined value. The learning value is fixed at its value based on the feedback correction amount before fixing. The predetermined time is set such that the learning value in the high load state converges within this time. By applying open loop control using this learning value, surging of the vehicle due to the air-fuel ratio feedback control in the high engine load state is prevented, while the air-fuel ratio in this state is controlled precisely to the stoichiometric air-fuel ratio.
    • 执行空燃比的反馈校正,学习反馈校正量,并且在下一次进行控制的情况下作为学习值应用。 确定发动机是否处于高负载状态,并且当高负载状态持续预定时间时,反馈校正量被固定在预定值。 学习值根据修正前的反馈校正量固定为其值。 预定时间被设定为使得高负载状态下的学习值在该时间内收敛。 通过使用该学习值应用开环控制,可以防止在高发动机负载状态下由于空燃比反馈控制引起的车辆浪涌,同时将该状态下的空燃比精确控制在理论空燃比 比。