会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Unidirectionally conductive materials for interconnection
    • 用于互连的单向导电材料
    • US20060228884A1
    • 2006-10-12
    • US11321127
    • 2005-12-28
    • Reza GolzarianRobert MeagleySeiichi MorimotoMansour Moinpour
    • Reza GolzarianRobert MeagleySeiichi MorimotoMansour Moinpour
    • H01L21/4763H01L21/44
    • H01L21/76843H01L21/76849H01L23/53238H01L2924/0002H01L2924/00
    • A method of forming and a device including an interconnect structure having a unidirectional electrical conductive material is described. The unidirectional conductive material may overlie interconnect materials, and/or may surround interconnect materials, such as by lining the walls and base of a trench and via. The unidirectional conductive material may be configured to conduct electricity in a direction corresponding to a projection to or from a contact point and conductive material overlying the unidirectional conductive material, but have no substantial electrical conductivity in other directions. Moreover, the unidirectional conductive material may be electrically conductive in a direction normal to a surface over which it is formed or in directions along or across a plane, but have no substantial electrical conductivity in other directions. Finally, the unidirectional conductive material may have properties tending to reduce metal diffusion, reduce electron migration, provide adhesion or bonding, and/or act as an etch stop.
    • 描述了一种形成方法和包括具有单向导电材料的互连结构的器件。 单向导电材料可以覆盖互连材料,和/或可以围绕互连材料,例如通过衬套沟槽和通孔的壁和底座。 单向导电材料可以被配置为在对应于与接触点的突出物相对应的方向上导电,并且覆盖在单向导电材料上方的导电材料,但是在其它方向上没有实质的导电性。 此外,单向导电材料可以在垂直于其形成的表面的方向或沿着或跨平面的方向上导电,但在其它方向上不具有实质的导电性。 最后,单向导电材料可能具有倾向于减少金属扩散,减少电子迁移,提供粘附或粘结和/或用作蚀刻停止的性质。
    • 2. 发明申请
    • Unidirectionally conductive materials for interconnection
    • 用于互连的单向导电材料
    • US20050070096A1
    • 2005-03-31
    • US10676294
    • 2003-09-30
    • Reza GolzarianRobert MeagleySeiichi MorimotoMansour Moinpour
    • Reza GolzarianRobert MeagleySeiichi MorimotoMansour Moinpour
    • H01L21/44H01L21/4763H01L21/768H01L23/532
    • H01L21/76843H01L21/76849H01L23/53238H01L2924/0002H01L2924/00
    • A method of forming and a device including an interconnect structure having a unidirectional electrical conductive material is described. The unidirectional conductive material may overlie interconnect materials, and/or may surround interconnect materials, such as by lining the walls and base of a trench and via. The unidirectional conductive material may be configured to conduct electricity in a direction corresponding to a projection to or from a contact point and conductive material overlying the unidirectional conductive material, but have no substantial electrical conductivity in other directions. Moreover, the unidirectional conductive material may be electrically conductive in a direction normal to a surface over which it is formed or in directions along or across a plane, but have no substantial electrical conductivity in other directions. Finally, the unidirectional conductive material may have properties tending to reduce metal diffusion, reduce electron migration, provide adhesion or bonding, and/or act as an etch stop.
    • 描述了一种形成方法和包括具有单向导电材料的互连结构的器件。 单向导电材料可以覆盖互连材料,和/或可以围绕互连材料,例如通过衬套沟槽和通孔的壁和底座。 单向导电材料可以被配置为在对应于与接触点的突出物相对应的方向上导电,并且覆盖在单向导电材料上方的导电材料,但是在其它方向上没有实质的导电性。 此外,单向导电材料可以在垂直于其形成的表面的方向或沿着或跨平面的方向上导电,但在其它方向上不具有实质的导电性。 最后,单向导电材料可能具有倾向于减少金属扩散,减少电子迁移,提供粘附或粘结和/或用作蚀刻停止的性质。
    • 4. 发明授权
    • Unidirectionally conductive materials for interconnection
    • 用于互连的单向导电材料
    • US07405419B2
    • 2008-07-29
    • US11321127
    • 2005-12-28
    • Reza M. GolzarianRobert P. MeagleySeiichi MorimotoMansour Moinpour
    • Reza M. GolzarianRobert P. MeagleySeiichi MorimotoMansour Moinpour
    • H01L47/00H01L23/52
    • H01L21/76843H01L21/76849H01L23/53238H01L2924/0002H01L2924/00
    • A method of forming and a device including an interconnect structure having a unidirectional electrical conductive material is described. The unidirectional conductive material may overlie interconnect materials, and/or may surround interconnect materials, such as by lining the walls and base of a trench and via. The unidirectional conductive material may be configured to conduct electricity in a direction corresponding to a projection to or from a contact point and conductive material overlying the unidirectional conductive material, but have no substantial electrical conductivity in other directions. Moreover, the unidirectional conductive material may be electrically conductive in a direction normal to a surface over which it is formed or in directions along or across a plane, but have no substantial electrical conductivity in other directions. Finally, the unidirectional conductive material may have properties tending to reduce metal diffusion, reduce electron migration, provide adhesion or bonding, and/or act as an etch stop.
    • 描述了一种形成方法和包括具有单向导电材料的互连结构的器件。 单向导电材料可以覆盖互连材料,和/或可以围绕互连材料,例如通过衬套沟槽和通孔的壁和底座。 单向导电材料可以被配置为在对应于与接触点的突出物相对应的方向上导电,并且覆盖在单向导电材料上方的导电材料,但是在其它方向上没有实质的导电性。 此外,单向导电材料可以在垂直于其形成的表面的方向或沿着或跨平面的方向上导电,但在其它方向上不具有实质的导电性。 最后,单向导电材料可能具有倾向于减少金属扩散,减少电子迁移,提供粘附或粘结和/或用作蚀刻停止的性质。
    • 5. 发明授权
    • Method for conditioning the surface of a polishing pad
    • 调整抛光垫表面的方法
    • US5081051A
    • 1992-01-14
    • US581292
    • 1990-09-12
    • Wayne A. MattinglySeiichi MorimotoSpencer E. Preston
    • Wayne A. MattinglySeiichi MorimotoSpencer E. Preston
    • B24B53/007B24B53/017
    • B24B53/017
    • An improved method for conditioning the surface of a pad for polishing a dielectric layer formed on a semiconductor substrate is disclosed. In one embodiment, the serrated edge of an elongated blade member is first placed in radial contact with the surface of the polishing pad. The table and the pad are then rotated relative to the blade member. At the same time, the blade member is pressed downwardly against the pad surface such that the serrated edge cuts a plurality of substantially circumferential grooves into the pad surface. These grooves are dimensioned so as to facilitate the polishing process by creating point contacts which increases the pad area and allows more slurry to applied to the substrate per unit area. Depending on the type of pad employed, the number of teeth per inch on the serrated edge, the type of slurry used, etc., the downward force applied to the blade member in the rotational speed of the table are optimized to obtain the resultant polishing rate and uniformity desired.
    • 公开了一种用于调节用于抛光形成在半导体衬底上的电介质层的焊盘表面的改进方法。 在一个实施例中,细长叶片构件的锯齿状边缘首先被放置成与抛光垫的表面径向接触。 然后桌子和垫子相对于叶片构件旋转。 同时,刀片构件被向下压靠在衬垫表面上,使得锯齿形边缘将多个基本上周向的凹槽切割成垫表面。 这些槽的尺寸被设计成便于通过产生点接触来促进抛光过程,这增加了焊盘面积,并允许更多的浆料被施加到每单位面积的衬底上。 根据所使用的垫的类型,锯齿形边缘上每英寸的齿数,所使用的浆料的类型等,优化了以工作台转速施加到叶片构件的向下的力,以获得所得到的抛光 所需的速率和均匀性。
    • 6. 发明授权
    • Polish to remove topography in sacrificial gate layer prior to gate patterning
    • 用于在栅极图案化之前去除牺牲栅极层中的形貌
    • US08334184B2
    • 2012-12-18
    • US12646450
    • 2009-12-23
    • Joseph M. SteigerwaldUday ShahSeiichi MorimotoNancy Zelick
    • Joseph M. SteigerwaldUday ShahSeiichi MorimotoNancy Zelick
    • H01L21/336H01L21/70
    • H01L29/66795H01L21/28123H01L29/66545H01L29/785
    • Techniques are disclosed for fabricating FinFET transistors (e.g., double-gate, trigate, etc). A sacrificial gate material (such as polysilicon or other suitable material) is deposited on fin structure, and polished to remove topography in the sacrificial gate material layer prior to gate patterning. A flat, topography-free surface (e.g., flatness of 50 nm or better, depending on size of minimum feature being formed) enables subsequent gate patterning and sacrificial gate material opening (via polishing) in a FinFET process flow. Use of the techniques described herein may manifest in structural ways. For instance, a top gate surface is relatively flat (e.g., flatness of 5 to 50 nm, depending on minimum gate height or other minimum feature size) as the gate travels over the fin. Also, a top down inspection of gate lines will generally show no or minimal line edge deviation or perturbation as the line runs over a fin.
    • 公开了用于制造FinFET晶体管(例如,双栅极,三极管等)的技术。 牺牲栅极材料(例如多晶硅或其他合适的材料)沉积在鳍结构上,并且在栅极图案化之前抛光以去除牺牲栅极材料层中的形貌。 平坦的,无地形的表面(例如,取决于形成的最小特征的尺寸,平均度为50nm或更好)使得后续的栅极图案化和牺牲栅极材料在FinFET工艺流程中打开(经由抛光)。 使用本文描述的技术可以以结构方式表现。 例如,当栅极在翅片上行进时,顶栅表面相对平坦(例如,平均度为5至50nm,取决于最小栅极高度或其他最小特征尺寸)。 此外,栅极线的自顶向下检查通常将显示没有或最小的线边缘偏离或扰动,因为线在翅片上延伸。
    • 9. 发明授权
    • Polysilicon polish for patterning improvement
    • 多晶硅抛光剂用于图案改进
    • US5911111A
    • 1999-06-08
    • US944041
    • 1997-09-02
    • Mark T. BohrLawrence N. BrighamPeter K. MoonSeiichi Morimoto
    • Mark T. BohrLawrence N. BrighamPeter K. MoonSeiichi Morimoto
    • H01L21/28H01L21/321H01L21/44
    • H01L21/3212H01L21/28123
    • A polishing process for polysilicon gate patterning improvement using standard patterning techniques in the manufacture of high performance metal oxide semiconductor (MOS) devices. The addition of a short silicon polish step, after deposition and before patterning of a polysilicon layer reduces the non-planarity normally associated with polysilicon. Polysilicon polishing removes the surface roughness in the polysilicon layer caused by the grain structure of polysilicon and the surface roughness due to the replication of the underlying topography of the isolation and substrate regions. The described method for removal of both types of surface roughness leaves the polysilicon layer planarized without increasing the defect level already associated with the manufacture of high performance MOS devices.
    • 在制造高性能金属氧化物半导体(MOS)器件中使用标准图案化技术的多晶硅栅极图案化改进的抛光工艺。 在沉积之后和在多晶硅层的图案化之前添加短硅抛光步骤减少了通常与多晶硅相关的非平面性。 多晶硅抛光消除由多晶硅的晶粒结构引起的多晶硅层中的表面粗糙度以及由于隔离和衬底区域的底部形貌的复制所引起的表面粗糙度。 所描述的用于去除两种类型的表面粗糙度的方法使多晶硅层平坦化,而不增加已经与高性能MOS器件的制造相关联的缺陷水平。
    • 10. 发明申请
    • POLISH TO REMOVE TOPOGRAPHY IN SACRIFICIAL GATE LAYER PRIOR TO GATE PATTERNING
    • 在移动栅栏之前,移除邻近门控层的波形
    • US20110147812A1
    • 2011-06-23
    • US12646450
    • 2009-12-23
    • Joseph M. SteigerwaldUday ShahSeiichi MorimotoNancy Zelick
    • Joseph M. SteigerwaldUday ShahSeiichi MorimotoNancy Zelick
    • H01L29/78H01L21/336
    • H01L29/66795H01L21/28123H01L29/66545H01L29/785
    • Techniques are disclosed for fabricating FinFET transistors (e.g., double-gate, trigate, etc). A sacrificial gate material (such as polysilicon or other suitable material) is deposited on fin structure, and polished to remove topography in the sacrificial gate material layer prior to gate patterning. A flat, topography-free surface (e.g., flatness of 50 nm or better, depending on size of minimum feature being formed) enables subsequent gate patterning and sacrificial gate material opening (via polishing) in a FinFET process flow. Use of the techniques described herein may manifest in structural ways. For instance, a top gate surface is relatively flat (e.g., flatness of 5 to 50 nm, depending on minimum gate height or other minimum feature size) as the gate travels over the fin. Also, a top down inspection of gate lines will generally show no or minimal line edge deviation or perturbation as the line runs over a fin.
    • 公开了用于制造FinFET晶体管(例如,双栅极,三极管等)的技术。 牺牲栅极材料(例如多晶硅或其他合适的材料)沉积在鳍结构上,并且在栅极图案化之前抛光以去除牺牲栅极材料层中的形貌。 平坦的,无地形的表面(例如,取决于形成的最小特征的尺寸,平均度为50nm或更好)使得后续的栅极图案化和牺牲栅极材料在FinFET工艺流程中打开(经由抛光)。 使用本文描述的技术可以以结构方式表现。 例如,当栅极在翅片上行进时,顶栅表面相对平坦(例如,平均度为5至50nm,取决于最小栅极高度或其他最小特征尺寸)。 此外,栅极线的自顶向下检查通常将显示没有或最小的线边缘偏离或扰动,因为线在翅片上延伸。