会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Integrated anisotropic rock physics model
    • 综合各向异性岩石物理模型
    • US07676349B2
    • 2010-03-09
    • US11666374
    • 2005-10-27
    • Shiyu XuRebecca L. SaltzerRobert G. Keys
    • Shiyu XuRebecca L. SaltzerRobert G. Keys
    • G06F7/60G06F17/10
    • G01V99/00
    • Method for constructing an integrated rock physics model that simulates both shale anisotropy and stress-induced anisotropy of clastic rocks. In the model, the total pore volume is divided into three parts according to the estimated shale volume and effective stress: (1) clay-related pores, (2) sand-related pores, and (3) microcracks (mainly in the sand component). The pore space is then partitioned into the clay-related and sand-related pores using a scheme first disclosed by Xu and White in 1995. The model simulates shale anisotropy via the preferred orientation of clay-related pores and stress-induced anisotropy via the preferred orientation of microcracks, which is controlled by the differential stresses. Laboratory measurements or well logs are needed to establish a relationship between crack density and the effective stress.
    • 构建综合岩石物理模型的方法,该模型模拟碎屑岩的页岩各向异性和应力诱导各向异性。 在模型中,根据估计的页岩体积和有效应力,总孔容积分为三部分:(1)粘土相关孔,(2)砂相孔,(3)微裂纹(主要在砂组分 )。 然后使用徐和白在1995年首先公开的方案将孔隙分隔成粘土相关和砂相关孔。该模型通过优选的粘土相关孔取向和应力诱导各向异性模拟页岩各向异性 微裂纹的取向,由微分应力控制。 需要实验室测量或测井以确定裂纹密度与有效应力之间的关系。
    • 4. 发明申请
    • Method for Obtaining Porosity and Shale Volume From Seismic Data
    • 从地震数据中获取孔隙度和页岩体积的方法
    • US20090271118A1
    • 2009-10-29
    • US11922815
    • 2006-06-06
    • Rebecca L. SaltzerChristopher J. FinnRongrong Lu
    • Rebecca L. SaltzerChristopher J. FinnRongrong Lu
    • G01V1/28
    • G01V1/306
    • Method for obtaining rock parameters such as porosity and vshale directly from inversion of seismic data corresponding to a single trace location. This method is distinguished from existing methods that obtain elastic properties from inversion of seismic data, then relate the elastic parameters to rock lithology parameters such as porosity or vshale because it is accomplished in one step, can incorporate anisotropy and does not require multiple trace locations for stability. The data are separated into partial stacks, and a wavelet is specified for each stack. A set of linearized equations are constructed relating seismic reflectivity to changes in elastic parameters, and another set of linearized equations is constructed relating the changes in elastic parameters to the lithologic parameters. The linearized reflectivity equations are combined with the linearized rock physics equations, convolved with the specified wavelets, and equated to the seismic data. The resulting matrix equations are then inverted and a solution is obtained for all offsets simultaneously.
    • 直接从对应于单一轨迹位置的地震数据反演获得岩石参数如孔隙度和垂直叶片的方法。 该方法与从地震数据反演获得弹性性质的现有方法不同,然后将弹性参数与岩石岩性参数(如孔隙度或vshale)相关联,因为它在一个步骤中完成,可以包含各向异性,并且不需要多个迹线位置 稳定性。 数据被分成部分堆栈,并为每个堆栈指定一个小波。 构造了一组线性方程,将地震反射率与弹性参数的变化相关联,另外建立了一组线性化方程,将弹性参数的变化与岩性参数相关联。 线性化反射率方程与线性化岩石物理方程组合,与指定的小波卷积,并等同于地震数据。 然后将所得到的矩阵方程反相,同时获得所有偏移的解。
    • 5. 发明授权
    • Method for obtaining porosity and shale volume from seismic data
    • 从地震数据中获取孔隙度和页岩体积的方法
    • US08126651B2
    • 2012-02-28
    • US11922815
    • 2006-06-06
    • Rebecca L. SaltzerChristopher J. FinnRongrong Lu
    • Rebecca L. SaltzerChristopher J. FinnRongrong Lu
    • G01V1/00G01V1/28
    • G01V1/306
    • Method for obtaining rock parameters such as porosity and vshale directly from inversion of seismic data corresponding to a single trace location. This method is distinguished from existing methods that obtain elastic properties from inversion of seismic data, then relate the elastic parameters to rock lithology parameters such as porosity or vshale because it is accomplished in one step, can incorporate anisotropy and does not require multiple trace locations for stability. The data are separated into partial stacks, and a wavelet is specified for each stack. A set of linearized equations are constructed relating seismic reflectivity to changes in elastic parameters, and another set of linearized equations is constructed relating the changes in elastic parameters to the lithologic parameters. The linearized reflectivity equations are combined with the linearized rock physics equations, convolved with the specified wavelets, and equated to the seismic data. The resulting matrix equations are then inverted and a solution is obtained for all offsets simultaneously.
    • 直接从对应于单一轨迹位置的地震数据反演获得岩石参数如孔隙度和垂直叶片的方法。 该方法与从地震数据反演获得弹性性质的现有方法不同,然后将弹性参数与岩石岩性参数(如孔隙度或vshale)相关联,因为它在一个步骤中完成,可以包含各向异性,并且不需要多个迹线位置 稳定性。 数据被分成部分堆栈,并为每个堆栈指定一个小波。 构造了一组线性方程,将地震反射率与弹性参数的变化相关联,另外建立了一组线性化方程,将弹性参数的变化与岩性参数相关联。 线性化反射率方程与线性化岩石物理方程组合,与指定的小波卷积,并等同于地震数据。 然后将所得到的矩阵方程反相,同时获得所有偏移的解。
    • 6. 发明授权
    • Systems and methods for subsurface electromagnetic mapping
    • 地下电磁测绘的系统和方法
    • US09015010B2
    • 2015-04-21
    • US13056041
    • 2009-08-31
    • Kenneth E. GreenLeslie A. WahrmundOlivier M. BurtzDennis E. WillenRebecca L. SaltzerLeonard J. Srnka
    • Kenneth E. GreenLeslie A. WahrmundOlivier M. BurtzDennis E. WillenRebecca L. SaltzerLeonard J. Srnka
    • G06F17/10G01V3/38G01V3/12
    • G01V3/38G01V3/12
    • Systems and methods which provide electromagnetic subsurface mapping to derive information with respect to subsurface features whose sizes are near to or below the resolution of electromagnetic data characterizing the subsurface are shown. Embodiments operate to identify a region of interest (203) in a resistivity image generated (202) using electromagnetic data (201). One or more scenarios may be identified for the areas of interest, wherein the various scenarios comprise representations of features whose sizes are near to or below the resolution of the electromagnetic data (204). According to embodiments, the scenarios are evaluated (205), such as using forward or inverse modeling, to determine each scenarios' fit to the available data and further to determine their geologic reasonableness (206). Resulting scenarios may be utilized in a number of ways, such as to be substituted in a resistivity image for a corresponding region of anomalous resistivity for enhancing the resistivity image (207).
    • 示出了提供电磁地下映射以相对于其尺寸接近或低于表征地下电磁数据的分辨率的地下特征的信息的系统和方法。 实施例用于使用电磁数据(201)识别生成(202)的电阻率图像中的感兴趣区域(203)。 可以针对感兴趣的区域识别一个或多个场景,其中各种场景包括尺寸接近或低于电磁数据(204)的分辨率的特征的表示。 根据实施例,评估方案(205),例如使用正向或反向建模,以确定每个场景适合于可用数据并进一步确定其地质合理性(206)。 可以以多种方式利用所得到的场景,例如在电阻率图像中替代用于增强电阻率图像的异常电阻率的对应区域(207)。
    • 9. 发明申请
    • Reducing the Dimensionality of the Joint Inversion Problem
    • 减少联合反转问题的维度
    • US20130179137A1
    • 2013-07-11
    • US13814214
    • 2011-06-27
    • Anoop A. MullurDennis E. WillenRebecca L. Saltzer
    • Anoop A. MullurDennis E. WillenRebecca L. Saltzer
    • G06F17/50
    • G06F17/5009G01V3/12G01V3/18G01V11/00G01V2210/6163G01V2210/6165
    • Method for reducing a 3D joint inversion of at least two different types of geophysical data acquired by 3-D surveys (21) to an equivalent set of ID inversions. First, a 3D inversion is performed on each data type separately to the yield a 3-D model of a physical property corresponding to the data type (22). Next, a ID model of the physical property is extracted at selected (x,y) locations. A ID simulator (23) and the ID model of the physical property is then used at each of the selected locations to create a synthetic ID data set at each location (24). Finally, the ID synthetic data sets for each different type of geophysical data are jointly inverted at each of the selected locations, yielding improved values of the physical properties. Because the joint inversion is a ID inversion, the method is computationally advantageous, while recognizing the impact of 3-D effects.
    • 将通过三维调查(21)获得的至少两种不同类型的地球物理数据的3D联合反演减少为等效的一组ID反转的方法。 首先,分别对每种数据类型执行3D反演以产生与数据类型(22)对应的物理属性的3-D模型。 接下来,在所选择的(x,y)位置提取物理属性的ID模型。 然后在每个所选择的位置处使用ID模拟器(23)和物理属性的ID模型来在每个位置(24)创建合成ID数据集。 最后,每个不同类型的地球物理数据的ID合成数据集合在每个选定位置处共同反转,产生改善的物理特性值。 因为联合反演是一个ID反转,所以该方法在计算上是有利的,同时识别3-D效应的影响。
    • 10. 发明申请
    • Systems and Methods For Subsurface Electromagnetic Mapping
    • 地下电磁测绘系统与方法
    • US20110166840A1
    • 2011-07-07
    • US13056041
    • 2009-08-31
    • Kenneth E. GreenLeslie A. WahrmundOliver M. BurtzDennis E. WillenRebecca L. SaltzerLeonard J. Srnka
    • Kenneth E. GreenLeslie A. WahrmundOliver M. BurtzDennis E. WillenRebecca L. SaltzerLeonard J. Srnka
    • G06G7/50G06F17/10
    • G01V3/38G01V3/12
    • Systems and methods which provide electromagnetic subsurface mapping to derive information with respect to subsurface features whose sizes are near to or below the resolution of electromagnetic data characterizing the subsurface are shown. Embodiments operate to identify a region of interest (203) in a resistivity image generated (202) using electromagnetic data (201). One or more scenarios may be identified for the areas of interest, wherein the various scenarios comprise representations of features whose sizes are near to or below the resolution of the electromagnetic data (204). According to embodiments, the scenarios are evaluated (205), such as using forward or inverse modeling, to determine each scenarios' fit to the available data and further to determine their geologic reasonableness (206). Resulting scenarios may be utilized in a number of ways, such as to be substituted in a resistivity image for a corresponding region of anomalous resistivity for enhancing the resistivity image (207).
    • 示出了提供电磁地下映射以相对于其尺寸接近或低于表征地下电磁数据的分辨率的地下特征的信息的系统和方法。 实施例用于使用电磁数据(201)识别生成(202)的电阻率图像中的感兴趣区域(203)。 可以针对感兴趣的区域识别一个或多个场景,其中各种场景包括尺寸接近或低于电磁数据(204)的分辨率的特征的表示。 根据实施例,评估方案(205),例如使用正向或反向建模,以确定每个场景适合于可用数据并进一步确定其地质合理性(206)。 可以以多种方式利用所得到的场景,例如在电阻率图像中替代用于增强电阻率图像的异常电阻率的对应区域(207)。