会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Systems and methods for subsurface electromagnetic mapping
    • 地下电磁测绘的系统和方法
    • US09015010B2
    • 2015-04-21
    • US13056041
    • 2009-08-31
    • Kenneth E. GreenLeslie A. WahrmundOlivier M. BurtzDennis E. WillenRebecca L. SaltzerLeonard J. Srnka
    • Kenneth E. GreenLeslie A. WahrmundOlivier M. BurtzDennis E. WillenRebecca L. SaltzerLeonard J. Srnka
    • G06F17/10G01V3/38G01V3/12
    • G01V3/38G01V3/12
    • Systems and methods which provide electromagnetic subsurface mapping to derive information with respect to subsurface features whose sizes are near to or below the resolution of electromagnetic data characterizing the subsurface are shown. Embodiments operate to identify a region of interest (203) in a resistivity image generated (202) using electromagnetic data (201). One or more scenarios may be identified for the areas of interest, wherein the various scenarios comprise representations of features whose sizes are near to or below the resolution of the electromagnetic data (204). According to embodiments, the scenarios are evaluated (205), such as using forward or inverse modeling, to determine each scenarios' fit to the available data and further to determine their geologic reasonableness (206). Resulting scenarios may be utilized in a number of ways, such as to be substituted in a resistivity image for a corresponding region of anomalous resistivity for enhancing the resistivity image (207).
    • 示出了提供电磁地下映射以相对于其尺寸接近或低于表征地下电磁数据的分辨率的地下特征的信息的系统和方法。 实施例用于使用电磁数据(201)识别生成(202)的电阻率图像中的感兴趣区域(203)。 可以针对感兴趣的区域识别一个或多个场景,其中各种场景包括尺寸接近或低于电磁数据(204)的分辨率的特征的表示。 根据实施例,评估方案(205),例如使用正向或反向建模,以确定每个场景适合于可用数据并进一步确定其地质合理性(206)。 可以以多种方式利用所得到的场景,例如在电阻率图像中替代用于增强电阻率图像的异常电阻率的对应区域(207)。
    • 2. 发明申请
    • Systems and Methods For Subsurface Electromagnetic Mapping
    • 地下电磁测绘系统与方法
    • US20110166840A1
    • 2011-07-07
    • US13056041
    • 2009-08-31
    • Kenneth E. GreenLeslie A. WahrmundOliver M. BurtzDennis E. WillenRebecca L. SaltzerLeonard J. Srnka
    • Kenneth E. GreenLeslie A. WahrmundOliver M. BurtzDennis E. WillenRebecca L. SaltzerLeonard J. Srnka
    • G06G7/50G06F17/10
    • G01V3/38G01V3/12
    • Systems and methods which provide electromagnetic subsurface mapping to derive information with respect to subsurface features whose sizes are near to or below the resolution of electromagnetic data characterizing the subsurface are shown. Embodiments operate to identify a region of interest (203) in a resistivity image generated (202) using electromagnetic data (201). One or more scenarios may be identified for the areas of interest, wherein the various scenarios comprise representations of features whose sizes are near to or below the resolution of the electromagnetic data (204). According to embodiments, the scenarios are evaluated (205), such as using forward or inverse modeling, to determine each scenarios' fit to the available data and further to determine their geologic reasonableness (206). Resulting scenarios may be utilized in a number of ways, such as to be substituted in a resistivity image for a corresponding region of anomalous resistivity for enhancing the resistivity image (207).
    • 示出了提供电磁地下映射以相对于其尺寸接近或低于表征地下电磁数据的分辨率的地下特征的信息的系统和方法。 实施例用于使用电磁数据(201)识别生成(202)的电阻率图像中的感兴趣区域(203)。 可以针对感兴趣的区域识别一个或多个场景,其中各种场景包括尺寸接近或低于电磁数据(204)的分辨率的特征的表示。 根据实施例,评估方案(205),例如使用正向或反向建模,以确定每个场景适合于可用数据并进一步确定其地质合理性(206)。 可以以多种方式利用所得到的场景,例如在电阻率图像中替代用于增强电阻率图像的异常电阻率的对应区域(207)。
    • 3. 发明授权
    • Method for obtaining resistivity from controlled source electromagnetic data
    • 从受控源电磁数据获取电阻率的方法
    • US08014988B2
    • 2011-09-06
    • US12280330
    • 2007-02-15
    • Leslie A. WahrmundKenneth E. GreenDmitriy A. PavlovLeonard J. Srnka
    • Leslie A. WahrmundKenneth E. GreenDmitriy A. PavlovLeonard J. Srnka
    • G06G7/48G06F7/60G06F17/10G01V1/40G01V3/18G01V5/04G01V9/00
    • G01V3/12G01V3/083
    • Method for generating a three-dimensional resistivity data volume for a subsurface region from an initial resistivity model and measured electromagnetic field data from an electromagnetic survey of the region, where the initial resistivity model is preferably obtained by performing multiple ID inversions of the measured data [100]. The resulting resistivity depth profiles are then registered at proper 3D positions [102]. The 3D electromagnetic response is simulated [106] assuming the resistivity structure is given by the initial resistivity model. The measured electromagnetic field data volume is scaled by the simulated results [108] and the ratios are registered at proper 3D positions [110] producing a ratio data volume [112]. A 3D resistivity volume is then generated by multiplying the initial resistivity volume by the ratio data volume (or some function of it), location-by location [114]. A related method emphasizes deeper resistive anomalies over masking effects of shallow anomalies.
    • 用于从初始电阻率模型生成用于地下区域的三维电阻率数据体积的方法以及来自该区域的电磁勘测的测量的电磁场数据,其中初始电阻率模型优选地通过执行测量数据的多个ID反转来获得[ 100]。 然后将所得到的电阻率深度分布记录在适当的3D位置[102]。 假设电阻率结构由初始电阻率模型给出,3D电磁响应被模拟[106]。 测量的电磁场数据体积由模拟结果[108]缩放,并且比率被记录在适当的3D位置[110],产生比率数据量[112]。 然后通过将初始电阻率乘以比率数据量(或其一些功能),逐位置[114]来生成3D电阻率体积。 相关方法强调了较浅的异常屏蔽效应的电阻异常。
    • 4. 发明申请
    • Method For Obtaining Resistivity From Controlled Source Electromagnetic Data
    • 从受控源电磁数据获取电阻率的方法
    • US20100332198A1
    • 2010-12-30
    • US12280330
    • 2007-02-15
    • Leslie A. WahrmundKenneth E. GreenDmitriy A. PavlovLeonard J. Srnka
    • Leslie A. WahrmundKenneth E. GreenDmitriy A. PavlovLeonard J. Srnka
    • G06F17/10
    • G01V3/12G01V3/083
    • Method for generating a three-dimensional resistivity data volume for a subsurface region from an initial resistivity model and measured electromagnetic field data from an electromagnetic survey of the region, where the initial resistivity model is preferably obtained by performing multiple ID inversions of the measured data [100]. The resulting resistivity depth profiles are then registered at proper 3D positions [102]. The 3D electromagnetic response is simulated [106] assuming the resistivity structure is given by the initial resistivity model. The measured electromagnetic field data volume is scaled by the simulated results [108] and the ratios are registered at proper 3D positions [110] producing a ratio data volume [112]. A 3D resistivity volume is then generated by multiplying the initial resistivity volume by the ratio data volume (or some function of it), location-by location [114]. A related method emphasizes deeper resistive anomalies over masking effects of shallow anomalies.
    • 用于从初始电阻率模型生成用于地下区域的三维电阻率数据体积的方法以及来自该区域的电磁勘测的测量的电磁场数据,其中初始电阻率模型优选地通过执行测量数据的多个ID反转来获得[ 100]。 然后将所得到的电阻率深度分布记录在适当的3D位置[102]。 假设电阻率结构由初始电阻率模型给出,3D电磁响应被模拟[106]。 测量的电磁场数据体积由模拟结果[108]缩放,并且比率被记录在适当的3D位置[110],产生比率数据量[112]。 然后通过将初始电阻率乘以比率数据量(或其一些功能),逐位置[114]来生成3D电阻率体积。 相关方法强调了较浅的异常屏蔽效应的电阻异常。
    • 7. 发明授权
    • Method for electroseismic survey design
    • 电测勘察设计方法
    • US08169222B2
    • 2012-05-01
    • US12526611
    • 2008-04-02
    • Scott C. HornbostelKenneth E. Green
    • Scott C. HornbostelKenneth E. Green
    • G01V3/12
    • G01V3/12G01V3/083
    • A method for designing a controlled-source electromagnetic survey that will discriminate between a defined deep marginal-interest reservoir (2) and specified false positive resistivity structures of concern (3, 4, 5). A reservoir model and a false positive model are constructed for each false positive scenario. The resistivity of the false positive model may be tuned to give electromagnetic data similar enough to the reservoir model when forward modeled that any differences fall in the model null space. A null-space discriminating ratio (“NSDR”) is defined, for example as the peak normalized difference of the two related modeled electromagnetic field data sets. An area coverage display of NSDR values (6) allows determination of such additional data as may be needed to distinguish the false positive body, and a survey design is developed accordingly (7). Reduction of the number of variables affecting the area coverage displays is a key feature of the method.
    • 一种用于设计受限源电磁勘测的方法,其将区分确定的深边缘利益储层(2)和指定的假阳性电阻率结构(3,4,5)。 为每个假阳性情景构建储层模型和假阳性模型。 可以调整假阳性模型的电阻率,以便在向前建模时给出与储层模型足够相似的电磁数据,即模型空间中存在任何差异。 定义空白识别率(“NSDR”),例如作为两个相关建模的电磁场数据集的峰值归一化差异。 NSDR值的区域覆盖显示(6)允许确定可能需要的附加数据来区分假阳性,并相应地开发勘测设计(7)。 减少影响区域覆盖显示的变量数量是该方法的一个关键特征。