会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method to eliminate top metal corner shaping during bottom metal patterning for MIM capacitors via plasma ashing and hard masking technique
    • 用于通过等离子体灰化和硬掩蔽技术消除MIM电容器底金属图案化期间的顶部金属角成形的方法
    • US06319767B1
    • 2001-11-20
    • US09798639
    • 2001-03-05
    • Randall Cher Liang ChaTae Jong LeeAlex SeeLap ChanYeow Kheng Lim
    • Randall Cher Liang ChaTae Jong LeeAlex SeeLap ChanYeow Kheng Lim
    • H01L218242
    • H01L28/60H01L21/31122H01L21/31144H01L21/32136H01L21/32139
    • A method for fabricating a metal-insulator-metal capacitor wherein top metal corner shaping during patterning is eliminated is described. An insulating layer is provided overlying a semiconductor substrate. A composite metal stack is formed comprising a first metal layer overlying the insulating layer, a capacitor dielectric layer overlying the first metal layer, a second metal layer overlying the capacitor dielectric layer, and a hard mask layer overlying the second metal layer. A first photoresist mask is formed overlying the hard mask layer. The composite metal stack is patterned using the first photoresist mask as an etching mask whereby the patterned first metal layer forms a bottom electrode of the capacitor. A portion of the first photoresist mask is removed by plasma ashing to form a second photoresist mask narrower than the first photoresist mask. The hard mask layer is patterned using the second photoresist mask as an etching mask. The second metal layer is patterned using the hard mask layer as an etching mask whereby the second metal layer forms a top electrode of the capacitor to complete fabrication of a metal-insulator-metal capacitor.
    • 描述了一种用于制造金属 - 绝缘体 - 金属电容器的方法,其中消除了图案化期间的顶部金属角成形。 绝缘层设置在半导体衬底上。 形成复合金属堆叠,其包括覆盖绝缘层的第一金属层,覆盖第一金属层的电容器电介质层,覆盖电容器电介质层的第二金属层和覆盖第二金属层的硬掩模层。 第一光致抗蚀剂掩模形成在硬掩模层上。 使用第一光致抗蚀剂掩模将复合金属堆叠图案化为蚀刻掩模,由此图案化的第一金属层形成电容器的底部电极。 通过等离子体灰化除去第一光致抗蚀剂掩模的一部分,以形成比第一光致抗蚀剂掩模窄的第二光刻胶掩模。 使用第二光致抗蚀剂掩模将硬掩模层图案化为蚀刻掩模。 使用硬掩模层作为蚀刻掩模对第二金属层进行构图,由此第二金属层形成电容器的顶部电极,以完成金属 - 绝缘体 - 金属电容器的制造。
    • 3. 发明授权
    • Versatile copper-wiring layout design with low-k dielectric integration
    • 多功能铜线布局设计,低k电介质集成
    • US06355563B1
    • 2002-03-12
    • US09798652
    • 2001-03-05
    • Randall Cher Liang ChaAlex SeeYeow Kheng LimTae Jong LeeLap Chan
    • Randall Cher Liang ChaAlex SeeYeow Kheng LimTae Jong LeeLap Chan
    • H01L2144
    • H01L21/76802H01L21/76825H01L21/76831H01L21/76832
    • A method to integrate low dielectric constant dielectric materials with copper metallization is described. A metal line is provided overlying a semiconductor substrate and having a nitride capping layer thereover. A polysilicon layer is deposited over the nitride layer and patterned to form dummy vias. A dielectric liner layer is conformally deposited overlying the nitride layer and dummy vias. A dielectric layer having a low dielectric constant is spun-on overlying the liner layer and covering the dummy vias. The dielectric layer is polished down whereby the dummy vias are exposed. Thereafter, the dielectric layer is cured whereby a cross-linked surface layer is formed. The dummy vias are removed thereby exposing a portion of the nitride layer within the via openings. The exposed nitride layer is removed. The via openings are filled with a copper layer which is planarized to complete copper metallization in the fabrication of an integrated circuit device.
    • 描述了一种将低介电常数电介质材料与铜金属化相结合的方法。 金属线设置在半导体衬底上并且在其上具有氮化物覆盖层。 多晶硅层沉积在氮化物层上并被图案化以形成虚拟通孔。 电介质衬垫层共形沉积在氮化物层和虚拟通孔之上。 将具有低介电常数的介电层旋涂在衬层上并覆盖虚拟通孔。 抛光电介质层,从而暴露虚拟通孔。 此后,电介质层被固化,由此形成交联表面层。 去除虚设通孔,从而将通孔的一部分氮化物层露出。 去除暴露的氮化物层。 通孔开口填充有铜层,该铜层在集成电路器件的制造中被平坦化以完成铜金属化。
    • 4. 发明授权
    • Simplified method to reduce or eliminate STI oxide divots
    • 简化方法来减少或消除STI氧化层
    • US06432797B1
    • 2002-08-13
    • US09768487
    • 2001-01-25
    • Randall Cher Liang ChaTae Jong LeeAlex SeeLap ChanYeow Kheng Lim
    • Randall Cher Liang ChaTae Jong LeeAlex SeeLap ChanYeow Kheng Lim
    • H01L2176
    • H01L21/76237H01L21/31053H01L21/31055
    • A method for forming shallow trench isolation wherein oxide divots at the edge of the isolation and active regions are reduced or eliminated is described. A trench is etched into a semiconductor substrate. An oxide layer is deposited overlying the semiconductor substrate and filling the trench. Nitrogen atoms are implanted into the oxide layer overlying the trench. The substrate is annealed whereby a layer of nitrogen-rich oxide is formed at the surface of the oxide layer overlying the trench. The oxide layer is planarized to the semiconductor substrate wherein the nitrogen-rich oxide layer is planarized more slowly than the oxide layer resulting in a portion of the oxide layer remaining overlying the trench after the oxide layer overlying the semiconductor substrate has been removed wherein the portion of the oxide layer remaining provides a smooth transition between the shallow trench isolation and the active areas completing the formation of shallow trench isolation in the fabrication of an integrated circuit device.
    • 描述了形成浅沟槽隔离的方法,其中在隔离和有源区的边缘处的氧化物凹陷被减少或消除。 将沟槽蚀刻到半导体衬底中。 沉积在半导体衬底上并填充沟槽的氧化物层。 将氮原子注入到覆盖沟槽的氧化物层中。 将衬底退火,由此在覆盖沟槽的氧化物层的表面上形成一层富氮氧化物。 氧化物层平坦化到半导体衬底,其中富氧氧化物层平坦化比氧化物层缓慢,导致一部分氧化物层保留在沟槽上方,在氧化物层覆盖半导体衬底之后,其中部分 剩余的氧化物层在浅沟槽隔离和有源区域之间提供平滑的过渡,从而在集成电路器件的制造中完成浅沟槽隔离的形成。
    • 6. 发明授权
    • Technique to achieve thick silicide film for ultra-shallow junctions
    • 实现超浅结的厚硅化物薄膜技术
    • US06878623B2
    • 2005-04-12
    • US10457885
    • 2003-06-09
    • Cheng Cheh TanRandall Cher Liang ChaAlex SeeLap Chan
    • Cheng Cheh TanRandall Cher Liang ChaAlex SeeLap Chan
    • H01L21/336H01L21/44
    • H01L29/66507H01L29/41783H01L29/665H01L29/6656
    • A gate structure having associated (LDD) regions and source and drain is formed as is conventional. A first oxide spacer, for example, is formed along the sidewalls of the gate structure. A layer of metal such as titanium is then deposited over the surface of the gate structure. Second sidewall spacers are formed covering the metal over the first sidewall spacer and covering the metal over isolation regions. A layer of polysilicon is deposited over the surface of the gate structure. A rapid thermal annealing (RTA) is performed causing the metal to react with both the silicon in the junction below the metal and the polysilicon above the metal forming a metal silicide. Metal along the sidewalls between the first and second sidewall spacers and over the isolation regions does not react and is etched away. By providing an additional source of silicon in the polysilicon layer above the metal, a thicker silicide is achieved.
    • 具有相关联(LDD)区域和源极和漏极的栅极结构如常规形成。 例如,沿着栅极结构的侧壁形成第一氧化物间隔物。 然后在栅极结构的表面上沉积诸如钛的金属层。 形成第二侧壁间隔物,覆盖第一侧壁间隔物上的金属,并将金属覆盖在隔离区上。 在栅极结构的表面上沉积多晶硅层。 进行快速热退火(RTA),使得金属与金属之下的结中的硅和形成金属硅化物的金属上方的多晶硅反应。 沿着第一和第二侧壁间隔物之间​​的侧壁以及隔离区域上的金属不会反应并被蚀刻掉。 通过在金属上方的多晶硅层中提供附加的硅源,可获得更厚的硅化物。
    • 8. 发明授权
    • Low-leakage DRAM structures using selective silicon epitaxial growth (SEG) on an insulating layer
    • 在绝缘层上使用选择性硅外延生长(SEG)的低泄漏DRAM结构
    • US06384437B1
    • 2002-05-07
    • US09963411
    • 2001-09-27
    • Kheng Chok TeeRandall Cher Liang ChaLap Chan
    • Kheng Chok TeeRandall Cher Liang ChaLap Chan
    • H01L27148
    • H01L27/10873H01L27/10808
    • Low current leakage DRAM structures are achieved using a selective silicon epitaxial growth over an insulating layer on memory cell (device) areas. An insulating layer, that also serves as a stress-release layer, and a Si3N4 hard mask are patterned to leave portions over the memory cell areas. Shallow trenches are etched in the substrate and filled with a CVD oxide which is polished back to the hard mask to form shallow trench isolation (STI) around the memory cell areas. The hard mask is selectively removed to form recesses in the STI aligned over the memory cell areas exposing the underlying insulating layer. Openings are etched in the insulating layer to provide a silicon-seed surface from which is grown a selective epitaxial layer extending over the insulating layer within the recesses. After growing a gate oxide on the epitaxial layer, FETs and DRAM capacitors can be formed on the epitaxial layer. The insulating layer under the epitaxial layer drastically reduces the capacitor leakage current and improves DRAM device performance. This self-aligning method also increases memory cell density, and is integratable into current DRAM processes to reduce cost.
    • 使用在存储器单元(器件)区域上的绝缘层上的选择性硅外延生长来实现低电流泄漏DRAM结构。 也用作应力释放层的绝缘层和Si 3 N 4硬掩模被图案化以在存储器单元区域上留下部分。 在衬底中蚀刻浅沟槽,并填充有CVD氧化物,其被抛光回硬掩模以在存储器单元区域周围形成浅沟槽隔离(STI)。 选择性地去除硬掩模,以在STI暴露下面的绝缘层的存储单元区域上对准STI中形成凹槽。 在绝缘层中蚀刻开口以提供硅种子表面,从该晶种表面生长在凹陷内的绝缘层上延伸的选择性外延层。 在外延层上生长栅极氧化物之后,可以在外延层上形成FET和DRAM电容器。 外延层下方的绝缘层大大降低了电容器的漏电流,提高了DRAM器件性能。 这种自对准方法也增加了存储单元密度,并且可以集成到当前的DRAM工艺中以降低成本。
    • 9. 发明授权
    • Method for making low-leakage DRAM structures using selective silicon epitaxial growth (SEG) on an insulating layer
    • 在绝缘层上制造使用选择性硅外延生长(SEG)的低泄漏DRAM结构的方法
    • US06319772B1
    • 2001-11-20
    • US09697946
    • 2000-10-30
    • Kheng Chok TeeRandall Cher Liang ChaLap Chan
    • Kheng Chok TeeRandall Cher Liang ChaLap Chan
    • H01L218242
    • H01L27/10873H01L27/10808
    • Low current leakage DRAM structures are achieved using a selective silicon epitaxial growth over an insulating layer on memory cell (device) areas. An insulating layer, that also serves as a stress-release layer, and a Si3N4 hard mask are patterned to leave portions over the memory cell areas. Shallow trenches are etched in the substrate and filled with a CVD oxide which is polished back to the hard mask to form shallow trench isolation (STI) around the memory cell areas. The hard mask is selectively removed to form recesses in the STI aligned over the memory cell areas exposing the underlying insulating layer. Openings are etched in the insulating layer to provide a silicon-seed surface from which is grown a selective epitaxial layer extending over the insulating layer within the recesses. After growing a gate oxide on the epitaxial layer, FETs and DRAM capacitors can be formed on the epitaxial layer. The insulating layer under the epitaxial layer drastically reduces the capacitor leakage current and improves DRAM device performance. This self-aligning method also increases memory cell density, and is integratable into current DRAM processes to reduce cost.
    • 使用在存储器单元(器件)区域上的绝缘层上的选择性硅外延生长来实现低电流泄漏DRAM结构。 也用作应力释放层的绝缘层和Si 3 N 4硬掩模被图案化以在存储器单元区域上留下部分。 在衬底中蚀刻浅沟槽,并填充有CVD氧化物,其被抛光回硬掩模以在存储器单元区域周围形成浅沟槽隔离(STI)。 选择性地去除硬掩模,以在STI暴露下面的绝缘层的存储单元区域上对准STI中形成凹槽。 在绝缘层中蚀刻开口以提供硅种子表面,从该晶种表面生长在凹陷内的绝缘层上延伸的选择性外延层。 在外延层上生长栅极氧化物之后,可以在外延层上形成FET和DRAM电容器。 外延层下方的绝缘层大大降低了电容器的漏电流,提高了DRAM器件性能。 这种自对准方法也增加了存储单元密度,并且可以集成到当前的DRAM工艺中以降低成本。
    • 10. 发明授权
    • Method to reduce polysilicon depletion in MOS transistors
    • 减少MOS晶体管多晶硅耗尽的方法
    • US06387784B1
    • 2002-05-14
    • US09810121
    • 2001-03-19
    • Yung Fu ChongRandall Cher Liang ChaLap ChanKin Leong Pey
    • Yung Fu ChongRandall Cher Liang ChaLap ChanKin Leong Pey
    • H01L214763
    • H01L29/6656H01L21/76886
    • A method is provided to reduce poly depletion in MOS transistors. Conventionally, after a polysilicon electrode has been doped, an anneal step is usually performed to activate the dopants. However, the anneal step may be insufficient to drive the implanted impurities down the entire depth of the polysilicon electrode. Consequently, a portion of the polysilicon gate nearest to the gate oxide will be depleted of dopants. This poly depletion will have a detrimental effect on the control of the threshold voltage, and hence on the performance of the device. It is disclosed in the present invention a method of forming polysilicon gates where dopant depletion at the interface near the gate oxide layer is alleviated substantially by using laser annealing; however, by first pre-amorphizing the polycrystalline silicon prior to ion (implantation to a desired depth such that during laser annealing the dopants will diffuse uniformly to a melt depth. In this manner, poly depletion effect is greatly reduced and hence performance of the device improved. The disclosed method is applicable to both n+ doped polysilicon gates (NMOS) and p+ doped polysilicon gates (PMOS).
    • 提供了一种减少MOS晶体管多余耗尽的方法。 通常,在掺杂多晶硅电极之后,通常进行退火步骤以激活掺杂剂。 然而,退火步骤可能不足以在多晶硅电极的整个深度下驱动注入的杂质。 因此,最接近栅极氧化物的多晶硅栅极的一部分将耗尽掺杂剂。 这种多余耗尽将对阈值电压的控制以及因此对器件的性能具有不利影响。 在本发明中公开了一种形成多晶硅栅极的方法,其中在栅极氧化物层附近的界面处的掺杂剂消耗基本上通过使用激光退火得到缓解; 然而,通过在离子之前首先将多晶硅预先失配(植入到期望的深度,使得在激光退火期间,掺杂剂将均匀地扩散到熔体深度),以这种方式,多余的效应被大大降低,因此器件的性能 所公开的方法适用于n +掺杂多晶硅栅极(NMOS)和p +掺杂多晶硅栅极(PMOS)。