会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method to adapt a template dataset to a target dataset by using curvelet representations
    • 通过使用曲线图表示将模板数据集适配到目标数据集的方法
    • US08280695B2
    • 2012-10-02
    • US12675083
    • 2008-08-28
    • Ramesh NeelamaniAnatoly BaumsteinWarren S. Ross
    • Ramesh NeelamaniAnatoly BaumsteinWarren S. Ross
    • H03F1/26G01V1/00G06G7/48
    • G01V1/36G01V2210/32G01V2210/56
    • Method for adapting a template to a target data set. The template may be used to remove noise from, or interpret noise in, the target data set. The target data set is transformed (550) using a selected complex-valued, directional, multi-resolution transform (‘CDMT’) satisfying the Hubert transform property at least approximately. An initial template is selected, and it is transformed (551) using the same CDMT. Then the transformed template is adapted (560) to the transformed target data by adjusting the template's expansion coefficients within allowed ranges of adjustment so as to better match the expansion coefficients of the target data set. Multiple templates may be simultaneously adapted to better fit the noise or other component of the data that it may be desired to represent by template.
    • 将模板适配到目标数据集的方法。 该模板可用于从目标数据集中去除噪声或解释噪声。 使用至少近似地满足Hubert变换属性的选定的复值定向多分辨率变换(CDMT)来变换(550)目标数据集。 选择初始模板,并使用相同的CDMT对其进行转换(551)。 然后,通过在允许的调整范围内调整模板的扩展系数,将变换的模板适配(560)到变换的目标数据,以便更好地匹配目标数据集的扩展系数。 多个模板可以同时适合于更好地拟合可能希望通过模板表示的数据的噪声或其他组件。
    • 5. 发明授权
    • Primary estimation on OBC data and deep tow streamer data
    • OBC数据和深拖串数据的主要估计
    • US09383466B2
    • 2016-07-05
    • US13989754
    • 2011-10-13
    • Gert-Jan A. van GroenestijnWarren S. Ross
    • Gert-Jan A. van GroenestijnWarren S. Ross
    • G01V1/38G01V1/36
    • G01V1/368G01V1/364G01V1/38G01V2210/56G01V2210/614G01V2210/67
    • Method for correcting OBC or deep-towed seismic streamer data for surface-related multiple reflections. The measured pressure data, preferably after conditioning (71), are simulated using a forward model that includes a water propagation operator between source locations and receiver locations and a term representing primary impulse responses (72). Other terms include direct arrivals and source wavelets. Iterative optimization of an objective function is used to minimize the difference between measured and simulated data, updating the primary impulse response term and optionally the source wavelets term each iteration cycle (73). The converged primary impulses (74) are used to construct simulated multiples and direct arrivals (75), which can be subtracted from the measured data. Optionally the measured data might be blended during the forward simulation (72), to save computational costs in the forward simulation (72) and in the inversion (73).
    • 用于校正表面相关多重反射的OBC或深拖地震拖缆数据的方法。 测量的压力数据,优选在调节(71)之后,使用包括源位置和接收器位置之间的水传播算子的正向模型以及表示主脉冲响应的术语(72)来模拟。 其他术语包括直接到达和源小波。 使用目标函数的迭代优化来最小化测量和模拟数据之间的差异,更新主脉冲响应项和可选的源小波项每个迭代周期(73)。 收敛主脉冲(74)用于构建模拟倍数和直达(75),可以从测量数据中减去。 可选地,在正向模拟(72)期间可以混合测量数据,以在前向仿真(72)和反演(73)中节省计算成本。
    • 7. 发明授权
    • Dispersion estimation by nonlinear optimization of beam-formed fields
    • 波束形成场非线性优化的色散估计
    • US09261616B2
    • 2016-02-16
    • US13469964
    • 2012-05-11
    • Warren S. RossSunwoong Lee
    • Warren S. RossSunwoong Lee
    • G01V1/30G06F17/14
    • G01V1/303G01V1/306G01V2210/47G06F17/14
    • A method for estimating velocity dispersion in seismic surface waves in massive 3-D data sets (401) that improves upon auto-picking of a curve along the peak or ridge of the magnitude of the beam-formed field (402). The seismic data are transformed to the frequency-slowness domain, where nonlinear constrained optimization is performed on the transformed data. The optimization matches a nonlinear mathematical parametric model (403) of a beam-formed field to that in the transformed data, adjusting the parameters each iteration to reduce mismatch (404). Dispersion curves are determined by the center of the beam in the optimized models (405). A preferred nonlinear parametric mathematical model is a Gaussian-shaped beam or a cosine-tapered boxcar beam.
    • 一种用于估计大尺度三维数据集(401)中的地震表面波中的速度色散的方法,其改进了沿着波束形成场(402)的幅度的峰值或脊的自动选取曲线。 将地震数据转换为频率 - 慢度域,对变换后的数据进行非线性约束优化。 优化将波束形成场的非线性数学参数模型(403)与变换数据中的参数模型进行匹配,每次迭代调整参数以减少失配(404)。 色散曲线由优化模型中的光束中心确定(405)。 优选的非线性参数数学模型是高斯形波束或余弦锥形箱形波束。
    • 8. 发明申请
    • Near-Offset Extrapolation For Free-Surface Multiple Elimination In Shallow Marine Environment
    • 在浅海洋环境中进行自由表面多次消除的近偏移外推法
    • US20130100771A1
    • 2013-04-25
    • US13533628
    • 2012-06-26
    • Mamadou S. DialloWarren S. Ross
    • Mamadou S. DialloWarren S. Ross
    • G01V1/28
    • G01V1/36G01V2210/1423G01V2210/244G01V2210/56G01V2210/57
    • The invention is a method for extrapolating missing near-offset seismic data (101) so that the data may be used, for example, in SRME or another multiple-reflection elimination method. The invention uses the reciprocity principle (102) to relate two seismic states (acoustic or elastic) that can occur in a time-invariant, bounded domain in space. One of these states represents the physical experiment for the acquisition of the actual seismic data where near-offset traces are missing, and the other state represents a synthetic experiment with no missing near offset traces, computer-generated on a much simpler earth model. The reciprocity relationship used to relate these two states is iteratively inverted for the missing near-offset traces (103), preferably using only part of the synthetic data (102) so as to reduce inversion artifacts. The reference model acts as a constraint on the near-offset extrapolation.
    • 本发明是用于外推丢失的近偏移地震数据(101)的方法,使得数据可以用于例如SRME或另一种多重反射消除方法。 本发明使用互惠原则(102)来描述可以在空间中的时不变的有界域中发生的两个地震状态(声学或弹性)。 这些状态中的一个代表用于采集近偏移轨迹缺失的实际地震数据的物理实验,另一个状态表示没有丢失近偏移轨迹的合成实验,在更简单的地球模型上计算机生成。 用于关联这两个状态的互易关系对于缺失的近偏移轨迹(103)被迭代地反转,优选仅使用合成数据(102)的一部分,以便减少反转伪像。 参考模型作为近偏移外推的约束。
    • 9. 发明申请
    • Seismic Velocity Model Updating and Imaging with Elastic Wave Imaging
    • 地震速度模型更新和成像与弹性波成像
    • US20140307928A1
    • 2014-10-16
    • US14188573
    • 2014-02-24
    • Charlie JingWarren S. Ross
    • Charlie JingWarren S. Ross
    • G01V1/30
    • G01V1/301G01V1/303G01V2210/51G01V2210/643G01V2210/671G01V2210/679
    • Method for building a seismic imaging velocity model, particularly at the boundary of a geo-body, and to perform imaging, by taking into account the elastic reflection and scattering information in the seismic data. More illumination of the base and flanks (or in general, the boundary) of the geo-body is provided from (a) inside of the geo-body (502), with elastically converted waves at the geo-body boundary used (via elastic RTM flooding); and (b) from outside the geo-body (503), by utilizing prism waves with elastic RTM to handle the phase correctly in the model building step. The increased illumination and correct elastic phase are used for geo-body boundary determination. Elastic RTM is then applied (505), along with the elastically derived imaging velocity model, to maximize the use of elastic energy in the imaging step, and to obtain the correct image with the correct phase.
    • 通过考虑地震数据中的弹性反射和散射信息,构建地震成像速度模型,特别是在地球体边界处进行成像的方法。 从(a)地质体(502)的内部提供地基体的基部和侧面(或一般地,边界)的更多照明,在所使用的地球体边界处通过弹性转换的波(通过弹性 RTM洪水); 和(b)通过利用具有弹性RTM的棱镜波在地面体外部(503)处理模型建立步骤中的相位。 增加的照明和正确的弹性相用于地球体边界的确定。 然后应用弹性RTM(505)以及弹性导出的成像速度模型,以在成像步骤中最大限度地利用弹性能量,并以正确的相位获得正确的图像。