会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明授权
    • Multilayered quantum conducting barrier structures
    • 多层量子导电阻挡结构
    • US06344673B1
    • 2002-02-05
    • US09607214
    • 2000-06-30
    • Caroline AussilhouCorinne BuchetPatrick RaffinFrancis RodierJean-Marc Rousseau
    • Caroline AussilhouCorinne BuchetPatrick RaffinFrancis RodierJean-Marc Rousseau
    • H01L27108
    • H01L27/10867H01L29/88
    • A multilayered quantum conducting barrier (MQCB) structure formed on two semiconductor regions having a different crystalline nature and a thin layer of an insulating material sandwiched between said semiconductor regions. An undoped amorphous silicon layer continuously coats these two semiconductor regions and insulating layer. The surface of the undoped amorphous silicon layer is nitridized to produce a superficial film of a nitride based material to form the desired quantum conducting barrier (QCB). A stack consisting of at least one dual layer comprised of a bottom undoped amorphous silicon layer and a top dopant monolayer is formed on said undoped amorphous silicon layer. After thermal processing, the MQCB structure operates as a strap allowing an electrical continuity between these semiconductor regions through the QCB by a quantum mechanical effect.
    • 形成在具有不同晶体性质的两个半导体区域上的多层量子导电屏障(MQCB)结构和夹在所述半导体区域之间的绝缘材料的薄层。 未掺杂的非晶硅层连续地涂覆这两个半导体区域和绝缘层。 将未掺杂的非晶硅层的表面氮化以产生氮化物基材料的表面膜以形成所需的量子传导屏障(QCB)。 在所述未掺杂非晶硅层上形成由至少一个由底部未掺杂非晶硅层和顶部掺杂剂单层组成的双层组成的叠层。 在热处理之后,MQCB结构作为带通过量子力学效应通过QCB在这些半导体区域之间进行电连续性操作。
    • 8. 发明授权
    • Methods of forming the buried strap and its quantum barrier in deep trench cell capacitors
    • 在深沟槽电容器中形成掩埋带及其量子势垒的方法
    • US06344390B1
    • 2002-02-05
    • US09607217
    • 2000-06-30
    • Mathias BostelmannCorine BucherPatrick RaffinFrancis RodierJean-Marc Rousseau
    • Mathias BostelmannCorine BucherPatrick RaffinFrancis RodierJean-Marc Rousseau
    • H01L218242
    • H01L27/10867
    • There is disclosed a method of forming a buried strap (BS) and its quantum conducting barrier (QCB) in a structure wherein a doped polycrystalline silicon region is exposed at the bottom of a recess and separated from a monocrystalline region of a silicon substrate by a region of an insulating material. First, a thin continuous layer of undoped amorphous silicon is deposited by LPCVD to coat said regions. The surface of this layer is nitridized to produce a Si3N4 QCB film. Now, at least one dual layer comprised of an undoped amorphous silicon layer and a dopant monolayer is deposited onto the structure by LPCVD. The recess is filled with undoped amorphous silicon to terminate the buried strap and its QCB. Finally, the structure is heated to activate the dopants in the buried strap to allow an electrical continuity between said polycrystalline and monocrystalline regions through the QCB by a quantum mechanical effect. All these steps are performed in situ in the same LPCVD tool.
    • 公开了一种在其中掺杂多晶硅区域暴露在凹陷的底部并与硅衬底的单晶区域分离的结构中的掩埋带(BS)及其量子传导屏障(QCB)的形成方法, 绝缘材料的区域。 首先,通过LPCVD沉积薄层的未掺杂非晶硅,以涂覆所述区域。 将该层的表面氮化以产生Si 3 N 4 QCB膜。 现在,通过LPCVD将至少一个由未掺杂的非晶硅层和掺杂剂单层组成的双层沉积到该结构上。 凹槽填充有未掺杂的非晶硅,以终止埋管带及其QCB。 最后,将结构加热以激活埋入带中的掺杂剂,以通过量子力学效应通过QCB在所述多晶和单晶区域之间实现电连续性。 所有这些步骤在相同的LPCVD工具中原位进行。