会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Fluidic mixing structure, method for fabricating same, and mixing method
    • 流体混合结构,其制造方法和混合方法
    • US20070047388A1
    • 2007-03-01
    • US11235771
    • 2005-09-26
    • Jeffrey DeNataleChung-Lung ChenQingjun CaiChialun Tsai
    • Jeffrey DeNataleChung-Lung ChenQingjun CaiChialun Tsai
    • B81B1/00
    • B01F13/0084B01F13/0086B81C1/00206
    • A fluidic micromixer comprises a plurality of fluid inlets in communication with a mixing chamber, the plurality of fluid inlets being adapted to introduce into the chamber a corresponding plurality of distinct fluid streams. The mixing chamber comprises at least one surface patterned to define hydrophobic and hydrophilic regions spaced apart along a principal direction of fluid flow within the chamber from the fluid inlets to a fluid outlet, the regions being adapted to induce fluid flow in a direction transverse to the principal direction of fluid flow to mix the fluid streams. At least one of the hydrophobic regions may comprise microstructures patterned on the at least one surface. Also disclosed are a method for fabricating the micromixer, a method of mixing a plurality of fluid streams by vortex mixing or instability mixing, and a system comprising the micromixer, fluid reservoirs and a pump for generating flow of fluids from the reservoirs to the micromixer.
    • 流体微混合器包括与混合室连通的多个流体入口,多个流体入口适于将相应的多个不同的流体流引入腔室。 混合室包括图案化的至少一个表面,以限定沿腔室内的流体流的主要方向与流体出口间隔开的疏水和亲水区域,该区域适于在横向于流体出口的方向上引起流体流动 流体流动的主要方向以混合流体流。 疏水区域中的至少一个可以包括在至少一个表面上图案化的微结构。 还公开了一种制造微混合器的方法,通过涡流混合或不稳定混合混合多个流体流的方法,以及包括微混合器,流体储存器和用于产生流体从储存器到微混合器的流体的泵的系统。
    • 4. 发明授权
    • Manufacturing method for stress compensated X-Y gimbaled MEMS mirror array
    • 应力补偿X-Y万向MEMS反射镜阵列的制造方法
    • US08472098B2
    • 2013-06-25
    • US12877053
    • 2010-09-07
    • Chialun TsaiJeffrey F. DeNatale
    • Chialun TsaiJeffrey F. DeNatale
    • G02B26/08
    • G02B26/105B81B2201/045B81C1/00142B81C2201/019G02B26/0841Y10S359/90
    • A wafer-level manufacturing method produces stress compensated x-y gimbaled comb-driven MEMS mirror arrays using two SOI wafers and a single carrier wafer. MEMS structures such as comb drives, springs, and optical surfaces are formed by processing front substrate layer surfaces of the SOI wafers, bonding together the processed surfaces, and removing the unprocessed SOI layers to expose second surfaces of the front substrate layers for further wafer-level processing. The bonded SOI wafers are mounted to a surface of the carrier wafer that has been separately processed. Processing wafer surfaces may include formation of a stress compensation layer to counteract physical effects of MEMS mirrors. The method may form multi-layered conductive spring structures for the mirrors, each spring having a first conducting layer for energizing a comb drive, a second conducting layer imparting a restoring force, and an insulating layer between the first and second conducting layers.
    • 晶片级制造方法使用两个SOI晶片和单载体晶片产生应力补偿的x-y万向节梳状驱动的MEMS反射镜阵列。 MEMS结构如梳形驱动器,弹簧和光学表面是通过处理SOI晶片的前衬底层表面,将经处理的表面结合在一起并去除未加工的SOI层以暴露前衬底层的第二表面以形成另外的晶片 - 级处理。 结合的SOI晶片被安装到已经分开处理的载体晶片的表面上。 处理晶片表面可以包括形成应力补偿层以抵消MEMS反射镜的物理效应。 该方法可以形成用于反射镜的多层导电弹簧结构,每个弹簧具有用于激励梳状驱动器的第一导电层,赋予恢复力的第二导电层以及第一和第二导电层之间的绝缘层。
    • 5. 发明申请
    • SYSTEM FOR HEATING A VAPOR CELL
    • 加热蒸气细胞系统
    • US20110147367A1
    • 2011-06-23
    • US12645427
    • 2009-12-22
    • Robert L. Borwick, IIIJeffrey F. DeNataleChialun TsaiPhilip A. StuparYa-Chi Chen
    • Robert L. Borwick, IIIJeffrey F. DeNataleChialun TsaiPhilip A. StuparYa-Chi Chen
    • H05B3/06H05B3/02
    • H05B3/00G04F5/14H05B2214/04
    • A vapor cell includes an interrogation cell in a substrate, the interrogation cell having an entrance window and an exit window, and a first transparent thin-film heater in thermal communication with the entrance window. The transparent thin-film heater has a first layer in communication with a first pole contact at a proximal end of the heater and a layer coupler contact at a distal end, a second layer in communication with a second pole contact at the proximal end, and the second layer electrically coupled to the layer coupler contact at the distal end. An insulating layer is sandwiched between the first and second layers. The insulating layer has an opening at the distal end to admit the layer coupler contact and to insulate the remainder of the second layer from the first layer. The first and second pole contacts are available to complete an electric circuit at the proximal end, with magnetic fields for each of the first and second layers oriented in opposing directions when a current is applied through the circuit.
    • 蒸汽池包括在基板中的询问单元,询问单元具有入口窗口和出口窗口,以及与入口窗口热连通的第一透明薄膜加热器。 透明薄膜加热器具有与加热器的近端处的第一极触点连通的第一层和在远端处的层耦合器触点,在近端与第二极触点连通的第二层,以及 第二层在远端电耦合到层耦合器接触。 绝缘层夹在第一层和第二层之间。 绝缘层在远端具有开口,以允许层耦合器接触并使第二层的其余部分与第一层绝缘。 第一和第二极触点可用于在近端完成电路,当通过电路施加电流时,磁场中的第一和第二层中的每一个以相反的方向取向。
    • 6. 发明授权
    • Micromachined fluidic apparatus
    • 微加工流体装置
    • US06477901B1
    • 2002-11-12
    • US09468628
    • 1999-12-21
    • Srinivas TadigadapaChialun TsaiYafan ZhangNader Najafi
    • Srinivas TadigadapaChialun TsaiYafan ZhangNader Najafi
    • G01F180
    • G01N9/002G01F1/8404G01F1/8445G01F1/8472G01N11/16G01N2009/006Y10T29/49002Y10T29/49428Y10T29/49995
    • Micromachine fluidic apparatus incorporates a free-standing tube section and electrodes to actuate or control the movement of the tube section, or to sense the movement of the tube section, or both. Electronic circuitry, which may be disposed on the same substrate as the fluidic portion of the apparatus, is used in conjunction with the tube and electrodes in conjunction with a variety of different applications, including fluid flow measurement, fluid density measurement, fluid viscosity measurement, fluid transport, separation and/or mixing. According to a particular embodiment, the free-standing section of the tube is resonated for fluid flow and density measurements according to the Coriolis effect. Capacitive/electrostatic actuation techniques are used to control or resonate the free-standing section of the tube, and to detect variations in tube movement. Different methods of fabricating micromachine fluidic apparatus are also disclosed, including the use of fusion bonding of non-conducting substrates, high-aspect ratio etching techniques, and anisotropic etching and refill techniques, preferably utilizing chevron-shaped slit openings to fabricate microtube sections.
    • 微机械流体装置包括独立的管部分和用于致动或控制管部分的运动或感测管部分的运动或两者的电极。 可以与设备的流体部分设置在同一基板上的电子电路结合各种不同的应用与管和电极一起使用,包括流体流量测量,流体密度测量,流体粘度测量, 流体输送,分离和/或混合。 根据特定实施例,根据科里奥利效应,管的独立部分被共振用于流体流动和密度测量。 电容/静电致动技术用于控制或谐振管的独立部分,并检测管运动的变化。 还公开了制造微机械流体装置的不同方法,包括使用非导电衬底的熔接,高纵横比蚀刻技术以及各向异性蚀刻和再填充技术,优选地使用人字形狭缝开口来制造微管段。
    • 7. 发明授权
    • Optical cross-connect
    • 光交叉连接
    • US07356216B1
    • 2008-04-08
    • US11613489
    • 2006-12-20
    • Graham J. MartinJian MaChialun Tsai
    • Graham J. MartinJian MaChialun Tsai
    • G02B6/26
    • G02B6/3518G02B6/32G02B6/3546G02B6/3636G02B6/3652
    • An optical cross-connect is provided. The optical cross-connect includes a glass wedge, having a front end and a back end, positioned between a first one-dimensional collimator array and a second one-dimensional collimator array, where the first collimator array includes a first V-groove array having a first set of etched grooves for placing a first group of optical fibers and the second collimator array includes a second V-groove array having a second set of etched grooves for placing a second group of optical fibers; and a MEMS substrate attached at a fixed distance to the front end of the glass wedge, where the front end is covered in a reflective coating for reflecting light from the first and second collimator arrays onto the MEMS substrate.
    • 提供光交叉连接。 光学交叉连接器包括具有位于第一一维准直器阵列和第二一维准直器阵列之间的前端和后端的玻璃楔,其中第一准直器阵列包括第一V形槽阵列,其具有 用于放置第一组光纤的第一组蚀刻槽,并且所述第二准直器阵列包括具有用于放置第二组光纤的第二组蚀刻槽的第二V形槽阵列; 以及安装在玻璃楔的前端固定距离的MEMS基板,其中前端被反射涂层覆盖,用于将来自第一和第二准直器阵列的光反射到MEMS基板上。
    • 10. 发明申请
    • COMPACT OPTICAL ASSEMBLY FOR CHIP-SCALE ATOMIC CLOCK
    • 用于芯片尺寸原子钟的紧凑光学组件
    • US20090251224A1
    • 2009-10-08
    • US11669251
    • 2007-01-31
    • Jeffrey Frank DeNataleRobert Ladd Borwick, IIIPhilip A. StuparChialun Tsai
    • Jeffrey Frank DeNataleRobert Ladd Borwick, IIIPhilip A. StuparChialun Tsai
    • H03B17/00G02B27/30
    • G02B27/0961G04F5/14Y10T29/49826
    • Provided is a chip-scale atomic clock having a folded optic configuration or physics package. In particular, the physics package includes a vapor cell for containing gaseous alkali atoms and a VCSEL for generating a laser light. One or more heating elements are positioned to simultaneously heat both the vapor cell and VCSEL to the required operating temperature. A micro-lens element, positioned between the VCSEL and a reflector, is used to first expand the beam of light, and then to subsequently collimate the light after it is once reflected. Collimated, reflected light passes through the vapor cell wherein the alkali atoms are excited and a percentage of the reflected light is absorbed. A detector, located opposite the reflector and micro-lens array, detects light passing through the cell. An error signal is generated and the output voltage of a local voltage oscillator is successively stabilized.
    • 提供了具有折叠光学配置或物理封装的芯片级原子钟。 特别地,物理封装包括用于容纳气态碱金属的蒸汽池和用于产生激光的VCSEL。 定位一个或多个加热元件以同时将蒸汽单元和VCSEL加热到所需的工作温度。 位于VCSEL和反射器之间的微透镜元件用于首先使光束膨胀,然后在稍后反射之后对光进行准直。 准直的反射光通过蒸汽池,其中碱性原子被激发并且反射光的百分比被吸收。 与反射镜和微透镜阵列相对的检测器检测通过电池的光。 产生误差信号,本地电压振荡器的输出电压相继稳定。