会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Manufacturing method for stress compensated X-Y gimbaled MEMS mirror array
    • 应力补偿X-Y万向MEMS反射镜阵列的制造方法
    • US08472098B2
    • 2013-06-25
    • US12877053
    • 2010-09-07
    • Chialun TsaiJeffrey F. DeNatale
    • Chialun TsaiJeffrey F. DeNatale
    • G02B26/08
    • G02B26/105B81B2201/045B81C1/00142B81C2201/019G02B26/0841Y10S359/90
    • A wafer-level manufacturing method produces stress compensated x-y gimbaled comb-driven MEMS mirror arrays using two SOI wafers and a single carrier wafer. MEMS structures such as comb drives, springs, and optical surfaces are formed by processing front substrate layer surfaces of the SOI wafers, bonding together the processed surfaces, and removing the unprocessed SOI layers to expose second surfaces of the front substrate layers for further wafer-level processing. The bonded SOI wafers are mounted to a surface of the carrier wafer that has been separately processed. Processing wafer surfaces may include formation of a stress compensation layer to counteract physical effects of MEMS mirrors. The method may form multi-layered conductive spring structures for the mirrors, each spring having a first conducting layer for energizing a comb drive, a second conducting layer imparting a restoring force, and an insulating layer between the first and second conducting layers.
    • 晶片级制造方法使用两个SOI晶片和单载体晶片产生应力补偿的x-y万向节梳状驱动的MEMS反射镜阵列。 MEMS结构如梳形驱动器,弹簧和光学表面是通过处理SOI晶片的前衬底层表面,将经处理的表面结合在一起并去除未加工的SOI层以暴露前衬底层的第二表面以形成另外的晶片 - 级处理。 结合的SOI晶片被安装到已经分开处理的载体晶片的表面上。 处理晶片表面可以包括形成应力补偿层以抵消MEMS反射镜的物理效应。 该方法可以形成用于反射镜的多层导电弹簧结构,每个弹簧具有用于激励梳状驱动器的第一导电层,赋予恢复力的第二导电层以及第一和第二导电层之间的绝缘层。
    • 3. 发明申请
    • SYSTEM FOR HEATING A VAPOR CELL
    • 加热蒸气细胞系统
    • US20110147367A1
    • 2011-06-23
    • US12645427
    • 2009-12-22
    • Robert L. Borwick, IIIJeffrey F. DeNataleChialun TsaiPhilip A. StuparYa-Chi Chen
    • Robert L. Borwick, IIIJeffrey F. DeNataleChialun TsaiPhilip A. StuparYa-Chi Chen
    • H05B3/06H05B3/02
    • H05B3/00G04F5/14H05B2214/04
    • A vapor cell includes an interrogation cell in a substrate, the interrogation cell having an entrance window and an exit window, and a first transparent thin-film heater in thermal communication with the entrance window. The transparent thin-film heater has a first layer in communication with a first pole contact at a proximal end of the heater and a layer coupler contact at a distal end, a second layer in communication with a second pole contact at the proximal end, and the second layer electrically coupled to the layer coupler contact at the distal end. An insulating layer is sandwiched between the first and second layers. The insulating layer has an opening at the distal end to admit the layer coupler contact and to insulate the remainder of the second layer from the first layer. The first and second pole contacts are available to complete an electric circuit at the proximal end, with magnetic fields for each of the first and second layers oriented in opposing directions when a current is applied through the circuit.
    • 蒸汽池包括在基板中的询问单元,询问单元具有入口窗口和出口窗口,以及与入口窗口热连通的第一透明薄膜加热器。 透明薄膜加热器具有与加热器的近端处的第一极触点连通的第一层和在远端处的层耦合器触点,在近端与第二极触点连通的第二层,以及 第二层在远端电耦合到层耦合器接触。 绝缘层夹在第一层和第二层之间。 绝缘层在远端具有开口,以允许层耦合器接触并使第二层的其余部分与第一层绝缘。 第一和第二极触点可用于在近端完成电路,当通过电路施加电流时,磁场中的第一和第二层中的每一个以相反的方向取向。
    • 4. 发明申请
    • MANUFACTURING METHOD FOR STRESS COMPENSATED X-Y GIMBALED MEMS MIRROR ARRAY
    • 用于应力补偿的X-Y GIMBALED MEMS MIRROR ARRAY的制造方法
    • US20110228370A1
    • 2011-09-22
    • US12877053
    • 2010-09-07
    • Chialun TsaiJeffrey F. DeNatale
    • Chialun TsaiJeffrey F. DeNatale
    • G02B26/08H01L21/02
    • G02B26/105B81B2201/045B81C1/00142B81C2201/019G02B26/0841Y10S359/90
    • A wafer-level manufacturing method produces stress compensated x-y gimbaled comb-driven MEMS mirror arrays using two SOI wafers and a single carrier wafer. MEMS structures such as comb drives, springs, and optical surfaces are formed by processing front substrate layer surfaces of the SOI wafers, bonding together the processed surfaces, and removing the unprocessed SOI layers to expose second surfaces of the front substrate layers for further wafer-level processing. The bonded SOI wafers are mounted to a surface of the carrier wafer that has been separately processed. Processing wafer surfaces may include formation of a stress compensation layer to counteract physical effects of MEMS mirrors. The method may form multi-layered conductive spring structures for the mirrors, each spring having a first conducting layer for energizing a comb drive, a second conducting layer imparting a restoring force, and an insulating layer between the first and second conducting layers.
    • 晶片级制造方法使用两个SOI晶片和单载体晶片产生应力补偿的x-y万向节梳状驱动的MEMS反射镜阵列。 MEMS结构如梳形驱动器,弹簧和光学表面是通过处理SOI晶片的前衬底层表面,将经处理的表面结合在一起并去除未加工的SOI层以暴露前衬底层的第二表面以形成另外的晶片 - 级处理。 结合的SOI晶片被安装到已经分开处理的载体晶片的表面上。 处理晶片表面可以包括形成应力补偿层以抵消MEMS反射镜的物理效应。 该方法可以形成用于反射镜的多层导电弹簧结构,每个弹簧具有用于激励梳状驱动器的第一导电层,赋予恢复力的第二导电层以及第一和第二导电层之间的绝缘层。
    • 5. 发明申请
    • MANUFACTURING METHOD FOR STRESS COMPENSATED X-Y GIMBALED MEMS MIRROR ARRAY
    • 用于应力补偿的X-Y GIMBALED MEMS MIRROR ARRAY的制造方法
    • US20080130081A1
    • 2008-06-05
    • US11950400
    • 2007-12-04
    • Chialun TsaiJeffrey F. DeNatale
    • Chialun TsaiJeffrey F. DeNatale
    • H01L21/46G02B26/08
    • G02B26/105B81B2201/045B81C1/00142B81C2201/019G02B26/0841Y10S359/90
    • A wafer-level manufacturing method produces stress compensated x-y gimbaled comb-driven MEMS mirror arrays using two SOI wafers and a single carrier wafer. MEMS structures such as comb drives, springs, and optical surfaces are formed by processing front substrate layer surfaces of the SOI wafers, bonding together the processed surfaces, and removing the unprocessed SOI layers to expose second surfaces of the front substrate layers for further wafer-level processing. The bonded SOI wafers are mounted to a surface of the carrier wafer that has been separately processed. Processing wafer surfaces may include formation of a stress compensation layer to counteract physical effects of MEMS mirrors to be formed in a subsequent step. The method may form multi-layered conductive spring structures for the mirrors, each spring having a first conducting layer for energizing a comb drive, a second conducting layer imparting a restoring force, and an insulating layer between the first and second conducting layers.
    • 晶片级制造方法使用两个SOI晶片和单载体晶片产生应力补偿的x-y万向节梳状驱动的MEMS反射镜阵列。 MEMS结构如梳形驱动器,弹簧和光学表面是通过处理SOI晶片的前衬底层表面,将处理后的表面结合在一起而形成的,并且去除未处理的SOI层以暴露前衬底层的第二表面, 级处理。 结合的SOI晶片被安装到已经分开处理的载体晶片的表面上。 处理晶片表面可以包括形成应力补偿层,以抵消在随后的步骤中形成的MEMS镜的物理效应。 该方法可以形成用于反射镜的多层导电弹簧结构,每个弹簧具有用于激励梳状驱动器的第一导电层,赋予恢复力的第二导电层以及第一和第二导电层之间的绝缘层。
    • 6. 发明授权
    • System for heating a vapor cell
    • 用于加热蒸汽池的系统
    • US08319156B2
    • 2012-11-27
    • US12645427
    • 2009-12-22
    • Robert L. Borwick, IIIJeffrey F. DeNataleChialun TsaiPhilip A. StuparYa-Chi Chen
    • Robert L. Borwick, IIIJeffrey F. DeNataleChialun TsaiPhilip A. StuparYa-Chi Chen
    • H05B3/02
    • H05B3/00G04F5/14H05B2214/04
    • A vapor cell includes an interrogation cell in a substrate, the interrogation cell having an entrance window and an exit window, and a first transparent thin-film heater in thermal communication with the entrance window. The transparent thin-film heater has a first layer in communication with a first pole contact at a proximal end of the heater and a layer coupler contact at a distal end, a second layer in communication with a second pole contact at the proximal end, and the second layer electrically coupled to the layer coupler contact at the distal end. An insulating layer is sandwiched between the first and second layers. The insulating layer has an opening at the distal end to admit the layer coupler contact and to insulate the remainder of the second layer from the first layer. The first and second pole contacts are available to complete an electric circuit at the proximal end, with magnetic fields for each of the first and second layers oriented in opposing directions when a current is applied through the circuit.
    • 蒸汽池包括在基板中的询问单元,询问单元具有入口窗口和出口窗口,以及与入口窗口热连通的第一透明薄膜加热器。 透明薄膜加热器具有与加热器的近端处的第一极触点连通的第一层和在远端处的层耦合器触点,在近端与第二极触点连通的第二层,以及 第二层在远端电耦合到层耦合器接触。 绝缘层夹在第一层和第二层之间。 绝缘层在远端具有开口,以允许层耦合器接触并使第二层的其余部分与第一层绝缘。 第一和第二极触点可用于在近端完成电路,当通过电路施加电流时,磁场中的第一和第二层中的每一个以相反的方向取向。
    • 7. 发明授权
    • Manufacturing method for stress compensated X-Y gimbaled MEMS mirror array
    • 应力补偿X-Y万向MEMS反射镜阵列的制造方法
    • US07813028B2
    • 2010-10-12
    • US11950400
    • 2007-12-04
    • Chialun TsaiJeffrey F. DeNatale
    • Chialun TsaiJeffrey F. DeNatale
    • G02B26/00
    • G02B26/105B81B2201/045B81C1/00142B81C2201/019G02B26/0841Y10S359/90
    • A wafer-level manufacturing method produces stress compensated x-y gimbaled comb-driven MEMS mirror arrays using two SOI wafers and a single carrier wafer. MEMS structures such as comb drives, springs, and optical surfaces are formed by processing front substrate layer surfaces of the SOI wafers, bonding together the processed surfaces, and removing the unprocessed SOI layers to expose second surfaces of the front substrate layers for further wafer-level processing. The bonded SOI wafers are mounted to a surface of the carrier wafer that has been separately processed. Processing wafer surfaces may include formation of a stress compensation layer to counteract physical effects of MEMS mirrors to be formed in a subsequent step. The method may form multi-layered conductive spring structures for the mirrors, each spring having a first conducting layer for energizing a comb drive, a second conducting layer imparting a restoring force, and an insulating layer between the first and second conducting layers.
    • 晶片级制造方法使用两个SOI晶片和单载体晶片产生应力补偿的x-y万向节梳状驱动的MEMS反射镜阵列。 MEMS结构如梳形驱动器,弹簧和光学表面是通过处理SOI晶片的前衬底层表面,将经处理的表面结合在一起并去除未加工的SOI层以暴露前衬底层的第二表面以形成另外的晶片 - 级处理。 结合的SOI晶片被安装到已经分开处理的载体晶片的表面上。 处理晶片表面可以包括形成应力补偿层,以抵消在随后的步骤中形成的MEMS镜的物理效应。 该方法可以形成用于反射镜的多层导电弹簧结构,每个弹簧具有用于激励梳状驱动器的第一导电层,赋予恢复力的第二导电层以及第一和第二导电层之间的绝缘层。
    • 9. 发明授权
    • Analyte detection via electrochemically transported and generated reagent
    • 通过电化学传输和产生的试剂进行分析物检测
    • US08153062B2
    • 2012-04-10
    • US11731138
    • 2007-03-30
    • Martin W. KendigChuan-Hua ChenD. Morgan TenchJeffrey F. DeNataleFrederick M. Discenzo
    • Martin W. KendigChuan-Hua ChenD. Morgan TenchJeffrey F. DeNataleFrederick M. Discenzo
    • G01N15/06
    • G01N33/02G01N21/272G01N33/1826Y02A20/206
    • Electrochemical devices, methods, and systems for detecting and quantifying analytes are disclosed. A chemical detection reagent is locally generated in a test solution by electrochemical reaction of a precursor compound caused to migrate into the test solution from a precursor solution separated from the test solution by a cell separator. This approach provides precise metering of the reagent, via the charge passed, and avoids the need to store a reagent solution that may be chemically unstable. In one embodiment, the starch concentration in a colloidal solution can be measured via spectroscopic detection of a blue complex formed by the interaction of starch with iodine produced, on demand, by electrochemical oxidation of iodide ion. The approach may also be used to characterize certain types of analytes. The invention is amenable to automation and is particularly useful for on-line monitoring of production processes, including the inclusion of feed back loop mechanisms for process control.
    • 公开了用于检测和定量分析物的电化学装置,方法和系统。 化学检测试剂在测试溶液中通过电化学反应局部产生,所述前体化合物通过细胞分离器从与测试溶液分离的前体溶液迁移到测试溶液中。 该方法通过经过的电荷提供了试剂的精确计量,并且避免了存储可能化学不稳定的试剂溶液的需要。 在一个实施方案中,胶体溶液中的淀粉浓度可以通过光谱检测通过淀粉与产生的碘的相互作用形成的蓝色络合物,根据需要通过碘化物离子的电化学氧化来测量。 该方法也可用于表征某些类型的分析物。 本发明适用于自动化,并且特别适用于生产过程的在线监测,包括包括用于过程控制的反馈循环机制。