会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • HYPER-PARAMETER SELECTION FOR DEEP CONVOLUTIONAL NETWORKS
    • 深层调节网络的参数选择
    • US20160224903A1
    • 2016-08-04
    • US14848296
    • 2015-09-08
    • QUALCOMM Incorporated
    • Sachin Subhash TALATHIDavid Jonathan JULIAN
    • G06N99/00G06N3/08
    • G06N99/005G06N3/08G06N3/082G06N7/005
    • Hyper-parameters are selected for training a deep convolutional network by selecting a number of network architectures as part of a database. Each of the network architectures includes one or more local logistic regression layer and is trained to generate a corresponding validation error that is stored in the database. A threshold error for identifying a good set of network architectures and a bad set of network architectures may be estimated based on validation errors in the database. The method also includes choosing a next potential hyper-parameter, corresponding to a next network architecture, based on a metric that is a function of the good set of network architectures. The method further includes selecting a network architecture, from among next network architectures, with a lowest validation error.
    • 选择超参数以通过选择多个网络架构作为数据库的一部分来训练深卷积网络。 每个网络架构包括一个或多个本地逻辑回归层,并被训练以产生存储在数据库中的对应验证错误。 可以基于数据库中的验证错误来估计用于识别良好的一组网络架构和一组坏的网络架构的阈值误差。 该方法还包括基于作为良好网络体系结构的函数的度量来选择对应于下一个网络体系结构的下一个潜在的超参数。 该方法还包括从下一个网络体系结构中选择具有最低验证错误的网络架构。
    • 6. 发明申请
    • CONVERSION OF NEURON TYPES TO HARDWARE
    • 神经类型转换为硬件
    • US20150269479A1
    • 2015-09-24
    • US14286277
    • 2014-05-23
    • QUALCOMM Incorporated
    • David Jonathan JULIANJan Krzysztof WEGRZYN
    • G06N3/08
    • G06N3/0481
    • Certain aspects of the present disclosure support a method and apparatus for conversion of neuron types to a hardware implementation of an artificial nervous system. According to certain aspects, at least one of synapse weights of the artificial nervous system, neuron input channel resistances associated with a neuron model for neuron instances of the artificial nervous system, or neuron input channel potentials associated with the neuron model can be normalized by one or more factors. A linear transformation can be determined for mapping of parameters of the neuron model. Then, the linear transformation can be applied to the parameters of the neuron model to obtain transformed parameters of the neuron model, and at least one of inputs to the neuron instances or dynamics of the neuron model based may be updated based at least in part on the transformed parameters.
    • 本公开的某些方面支持用于将神经元类型转换为人造神经系统的硬件实现的方法和装置。 根据某些方面,人造神经系统的突触重量中的至少一个,与人造神经系统的神经元实例的神经元模型相关联的神经元输入通道电阻或与神经元模型相关联的神经元输入通道电位可以被一个 或更多因素。 可以确定神经元模型的参数映射的线性变换。 然后,线性变换可以应用于神经元模型的参数以获得神经元模型的变换参数,并且至少基于神经元模型的神经元实例或动力学的输入中的至少一个可以至少部分地基于 变换参数。