会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Robust character segmentation for license plate images
    • 车牌图像的强大字符分割
    • US08934676B2
    • 2015-01-13
    • US13539739
    • 2012-07-02
    • Aaron Michael BurryClaude FillionVladimir Kozitsky
    • Aaron Michael BurryClaude FillionVladimir Kozitsky
    • G06K9/00G06K9/48G06K9/03G06K7/10
    • G06K9/34G06K9/325G06K2209/01G06K2209/15
    • A method and system for achieving accurate segmentation of characters with respect to a license plate image within a tight bounding box image. A vehicle image can be captured by an image capturing unit and processed utilizing an ALPR unit. A vertical projection histogram can be calculated to produce an initial character boundary (cuts) and local statistical information can be employed to split a large cut and insert a missing character. The cut can be classified as a valid and/or a suspect character and the suspect character can be analyzed. The suspect character can be normalized and passed to an OCR module for decoding and generating a confidence quote with every conclusion. The non-character images can be rejected at the OCR level by enforcing a confidence threshold. An adjoining suspect narrow character can be combined and the OCR confidence of the combined character can be assessed.
    • 一种用于在紧密的边界框图像内实现相对于车牌图像的字符的精确分割的方法和系统。 车辆图像可以由图像捕获单元捕获并且利用ALPR单元进行处理。 可以计算垂直投影直方图以产生初始字符边界(切割),并且可以采用局部统计信息来分割大剪切并插入缺失的字符。 切割可以分为有效的和/或可疑的角色,并且可以分析可疑的角色。 可疑的角色可以被归一化并传递给OCR模块进行解码,并产生每个结论的置信度。 非字符图像可以通过强制置信阈值在OCR级别被拒绝。 可以组合相邻的可疑小角色,可以评估组合角色的OCR置信度。
    • 4. 发明申请
    • METHOD AND SYSTEM FOR ROBUST TILT ADJUSTMENT AND CROPPING OF LICENSE PLATE IMAGES
    • 用于稳定倾斜调整的方法和系统和许可证板图像的合并
    • US20130279758A1
    • 2013-10-24
    • US13453144
    • 2012-04-23
    • Aaron Michael BurryClaude FillionVladimir KozitskyZhigang Fan
    • Aaron Michael BurryClaude FillionVladimir KozitskyZhigang Fan
    • G06K9/46G06K9/00
    • G06K9/3258G06K9/3275G06K9/342G06K2209/01
    • Methods, systems and processor-readable media for robust tilt adjustment and cropping of a license plate image. A vehicle image can be captured by an image-capturing unit and converted to a binary image utilizing a binarization approach. A long run within the binary image can then be removed and a morphological filtering can be applied to break an unwanted connection between characters due to a license plate frame and an image noise. A connected component (CC) within the image can be identified and screened based on a number of key metrics to remove a most likely candidate character connected component. A line-fit based iterative search process can then be performed for robust tilt removal and vertical cropping of the license plate image to obtain a tight bounding box on the license plate characters if sufficient candidate characters remain after the search process. Otherwise, the region of interest can be rejected.
    • 方法,系统和处理器可读介质,用于强大的倾斜调整和车牌图像的裁剪。 车辆图像可以由图像捕获单元捕获并且使用二值化方法被转换成二值图像。 然后可以去除二进制图像中的长时间,并且可以应用形态滤波来打破由于牌照框架和图像噪声引起的字符之间的不期望的连接。 可以基于多个关键指标来识别和屏蔽图像内的连接分量(CC),以消除最可能的候选字符连接分量。 然后可以执行基于线拟合的迭代搜索过程,用于强制倾斜移除和车牌图像的垂直裁剪,以便在搜索过程之后剩余足够的候选人物时,在车牌字符上获得紧密的边界框。 否则,可以拒绝感兴趣的区域。
    • 5. 发明申请
    • ROBUST CROPPING OF LICENSE PLATE IMAGES
    • 许可证板图像的稳健修剪
    • US20130272579A1
    • 2013-10-17
    • US13448976
    • 2012-04-17
    • Aaron Michael BurryClaude FillionVladimir KozitskyRaja BalaZhigang Fan
    • Aaron Michael BurryClaude FillionVladimir KozitskyRaja BalaZhigang Fan
    • G06K9/46G06K9/34G06K9/54
    • G06K9/3258G06K2209/15
    • A method, system, and computer-usable tangible storage device for robustly cropping and accurately recognizing license plates to account for noise sources and interfering artifacts are disclosed. License plate images and sub-images can be tightly cropped utilizing an image-based classifier and gradient-based cropping. An image-based classifier can identify the location of valid characters within the image. Because of a number of noise sources, such as, for example, residual plate rotation and shear in the characters within the image, the image-based classifier performs a “rough” identification of the image boundaries. An additional processing step utilizing gradient-based cropping is performed to fine-tune the license plate image boundaries. Gradient-based cropping eliminates unwanted border artifacts that could substantially impact the segmentation and license plate character recognition results.
    • 公开了一种方法,系统和计算机可用的有形存储设备,用于强力裁剪和准确识别牌照以考虑噪声源和干扰伪像。 可以使用基于图像的分类器和基于梯度的裁剪来严格裁剪牌照图像和子图像。 基于图像的分类器可以识别图像中有效字符的位置。 由于许多噪声源,例如图像中的字符中的残余板旋转和剪切,基于图像的分类器对图像边界执行“粗略”识别。 执行利用基于梯度的裁剪的附加处理步骤来微调车牌图像边界。 基于梯度的裁剪消除了不必要的边界伪影,可能会对分割和车牌字符识别结果产生重大影响。
    • 8. 发明申请
    • ROBUST CHARACTER SEGMENTATION FOR LICENSE PLATE IMAGES
    • 许可证板图像的强大字符分段
    • US20130294654A1
    • 2013-11-07
    • US13539739
    • 2012-07-02
    • Aaron Michael BurryClaude FillionVladimir Kozitsky
    • Aaron Michael BurryClaude FillionVladimir Kozitsky
    • G06K9/34
    • G06K9/34G06K9/325G06K2209/01G06K2209/15
    • A method and system for achieving accurate segmentation of characters with respect to a license plate image within a tight bounding box image. A vehicle image can be captured by an image capturing unit and processed utilizing an ALPR unit. A vertical projection histogram can be calculated to produce an initial character boundary (cuts) and local statistical information can be employed to split a large cut and insert a missing character. The cut can be classified as a valid and/or a suspect character and the suspect character can be analyzed. The suspect character can be normalized and passed to an OCR module for decoding and generating a confidence quote with every conclusion. The non-character images can be rejected at the OCR level by enforcing a confidence threshold. An adjoining suspect narrow character can be combined and the OCR confidence of the combined character can be assessed.
    • 一种用于在紧密的边界框图像内实现相对于车牌图像的字符的精确分割的方法和系统。 车辆图像可以由图像捕获单元捕获并且利用ALPR单元进行处理。 可以计算垂直投影直方图以产生初始字符边界(切割),并且可以采用局部统计信息来分割大剪切并插入缺失的字符。 切割可以分为有效的和/或可疑的角色,并且可以分析可疑的角色。 可疑人物可以归一化并传递给OCR模块进行解码,并产生每个结论的置信度。 非字符图像可以通过强制置信阈值在OCR级别被拒绝。 可以组合相邻的可疑小角色,可以评估组合角色的OCR置信度。