会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • High strength seamless steel pipe excellent in hydrogen-induced cracking resistance and its production method
    • 高强度无缝钢管耐氢破坏性优良及其制备方法
    • US20080283161A1
    • 2008-11-20
    • US12219390
    • 2008-07-22
    • Nobutoshi MuraoNobuyuki HisamuneHajime OsakoKunio Kondo
    • Nobutoshi MuraoNobuyuki HisamuneHajime OsakoKunio Kondo
    • C21D9/08
    • C21D9/08C21D8/10C21D2211/002C21D2211/005C21D2211/008C22C38/002C22C38/02C22C38/04C22C38/22C22C38/24
    • The present invention relates to a high strength seamless steel pipe excellent in hydrogen-induced cracking resistance, characterized by consisting of, by mass %, C: 0.03-0.11%, Si: 0.05-0.5%, Mn: 0.8-1.6%, P: 0.025% or less, S: 0.003% or less, Ti: 0.002-0.017%, Al: 0.001-0.10%, Cr: 0.05-0.5%, Mo: 0.02-0.3%, V: 0.02-0.20%, Ca: 0.0005-0.005%, N: 0.008% or less and O (Oxygen): 0.004% or less, and the balance Fe and impurities, and also characterized in that the microstructure of the steel is bainite and/or martensite, ferrite is precipitated at grain boundaries and yield stress is 483 MPa or more. Further, to ensure high strength of the steel, the seamless steel pipe preferably contains, by mass %, at least one of Cu: 0.05-0.5% and Ni: 0.05-0.5%. To produce the above-mentioned steel pipe, it is desirable to limit a starting temperature of quenching after rolling, a cooling rate and a tempering temperature. By this configuration a seamless steel pipe having an yield stress of 483 MPa or more and excellent HIC resistance, which is suitable for a pipeline, can be provided.
    • 本发明涉及氢诱发抗裂性优异的高强度无缝钢管,其特征在于以质量%计含有C:0.03-0.11%,Si:0.05-0.5%,Mn:0.8-1.6%,P :0.025%以下,S:0.003%以下,Ti:0.002〜0.017%,Al:0.001-0.10%,Cr:0.05〜0.5%,Mo:0.02〜0.3%,V:0.02〜0.20%,Ca: 0.0005-0.005%,N:0.008%以下,O(氧):0.004%以下,余量为Fe和杂质,其特征在于,钢的组织为贝氏体和/或马氏体,铁素体析出 晶界和屈服应力为483MPa以上。 此外,为了确保钢的高强度,无缝钢管优选以质量%计含有Cu:0.05〜0.5%和Ni:0.05〜0.5%中的至少一种。 为了制造上述钢管,优选限制轧制后的淬火起始温度,冷却速度和回火温度。 通过这种结构,可以提供一种适用于管道的屈服应力为483MPa以上,耐HIC电阻优异的无缝钢管。
    • 4. 发明申请
    • Seamless steel tubes and pipes for use in oil well
    • 用于油井的无缝钢管和管道
    • US20060231168A1
    • 2006-10-19
    • US11387747
    • 2006-03-24
    • Keiichi NakamuraHajime OsakoNobutoshi MuraoToshiharu Abe
    • Keiichi NakamuraHajime OsakoNobutoshi MuraoToshiharu Abe
    • C22C38/22
    • C22C38/02C22C38/04C22C38/22
    • Disclosed are seamless steel tubes for oil well use, comprising C: 0.14-0.35%, Si: 0.05-1.0%, Mn: 0.05-2.0%, Cr: 0.05-1.5%, Mo: 0.05-2.0%, Ti: 0-0.05%, V: 0-0.1%, and Al: not less than 0.010%, wherein the concentration product by Al and N content, corrected by Ti and V, is within the range of 0.00001 to 0.00050, and the residuals are Fe and impurities including P: 0.025% or less, and S: 0.010% or less. Ti, V, Nb, or B is preferably contained to enhance the quench hardenability as well as the resistance to sulfide stress corrosion cracking, and further Ca, Mg and/or REM is preferably contained to improve the shape of non-metallic inclusions, enhancing the resistance to sulfide stress corrosion cracking. Thus, said tubes by the invention can be produced by efficient means realizing energy savings, and widely used as ones having excellent stability in mechanical strength.
    • 公开了用于油井的无缝钢管,其包括C:0.14-0.35%,Si:0.05-1.0%,Mn:0.05-2.0%,Cr:0.05-1.5%,Mo:0.05-2.0%,Ti: 0.05%,V:0〜0.1%,Al:不小于0.010%,其中通过Ti和V校正的Al和N含量的浓度乘积在0.00001至0.00050的范围内,残余物为Fe和 P:0.025%以下,S:0.010%以下的杂质。 优选含有Ti,V,Nb或B以提高淬火淬透性以及耐硫化物应力腐蚀开裂性,并且优选含有Ca,Mg和/或REM,以改善非金属夹杂物的形状,提高 耐硫化物应力腐蚀开裂。 因此,通过本发明的所述管可以通过实现节能的有效手段制造,并且被广泛用作具有优异的机械强度稳定性的装置。
    • 5. 发明授权
    • Process for producing high-strength seamless steel pipe having excellent
sulfide stress cracking resistance
    • 具有优异的耐硫化物应力开裂性的高强度无缝钢管的制造方法
    • US5938865A
    • 1999-08-17
    • US952222
    • 1998-02-05
    • Kunio KondoTakahiro KushidaHajime OsakoHideki Takabe
    • Kunio KondoTakahiro KushidaHajime OsakoHideki Takabe
    • B21B19/04B21B23/00C21D8/10
    • B21B23/00C21D8/10B21B19/04
    • A process for producing a seamless steel pipe wherein pipe manufacturing steps and the heat treatment steps are carried out in one production line. The properties of the pipe are comparative or superior to those of the pipe manufactured in the conventional reheating, quenching and tempering process. The process is characterized by using the billet of a low alloy steel containing C: 0.15-0.50%, Cr: 0.1-1.5%, Mo: 0.1-1.5%, Al: 0.005-0.50%, Ti: 0.005-0.50% and Nb: 0.003-0.50%, and comprising the following steps (1) to (5).(1) hot rolling with 40% or more of cross sectional reduction ratio,(2) finishing the hot rolling in a temperature range of 800-1100.degree. C.,(3) putting the manufactured steel pipe promptly in a complementary heating apparatus after the finish rolling, and complementarily heating at the temperature and time satisfying the following formula (a).(4) quenching the steel pipe immediately after taking out of the complementary heating apparatus, and(5) tempering the pipe at a temperature not higher than the Ac.sub.1 transformation point as the last heat treatment.23500.ltoreq.(T+273).times.(21+log t).ltoreq.26000 (a)where, T (.degree.C.) is a temperature of not lower than 850.degree. C., and t is time (hr). Further, an intermediate heat treatment consisting of quenching or combination of quenching and tempering may be applied between the steps (4) and (5).
    • PCT No.PCT / JP96 / 01274 Sec。 371日期:1998年2月5日 102(e)日期1998年2月5日PCT提交1996年5月15日PCT公布。 公开号WO96 / 36742 日期:1996年11月21日一种生产无缝钢管的方法,其中在一条生产线中进行管制造步骤和热处理步骤。 管道的性能与传统的再加热,淬火和回火工艺中制造的管材的性能相比甚至更好。 该方法的特征在于使用含有C:0.15-0.50%,Cr:0.1-1.5%,Mo:0.1-1.5%,Al:0.005-0.50%,Ti:0.005-0.50%的低合金钢和Nb :0.003-0.50%,并且包括以下步骤(1)至(5)。 (1)以40%以上的横截面减速比进行热轧,(2)在800-1100℃的温度范围内完成热轧,(3)将制造的钢管迅速置于互补的加热装置中 精轧,并在满足下述式(a)的温度和时间下互补加热。 (4)在取出补充加热装置后立即淬火钢管,(5)在不高于Ac1相变点的温度下对管进行回火作为最后的热处理.23500
    • 6. 发明授权
    • Foreign pipe or tube determining method
    • 国外管或管测定方法
    • US08091394B2
    • 2012-01-10
    • US12738103
    • 2008-11-26
    • Hajime OsakoTakeshi Maekawa
    • Hajime OsakoTakeshi Maekawa
    • B21B37/00G06F19/00
    • G01B21/02B21B23/00B21B38/04G01B21/08G01B21/10G01G17/00
    • There is provided a foreign pipe or tube determining method capable of accurately determining a foreign pipe or tube. The foreign pipe or tube determining method in accordance with the present invention includes a step for determining the presence of a foreign pipe or tube by comparing the length of each pipe or tube in a size measuring step with the length of each pipe or tube measured in an actual weighing and length measuring step, which is associated with each pipe or tube in the size measuring step, a step for determining the presence of a foreign pipe or tube by comparing the weight of each pipe or tube calculated in a weight calculating step with the weight of each pipe or tube measured in the actual weighing and length measuring step, which is associated with each pipe or tube in a weight calculating step, and a step for determining the presence of a foreign pipe or tube based on the material of each pipe or tube determined in a material determining step.
    • 提供了能够精确地确定外部管或管的外来管或管确定方法。 根据本发明的外管管确定方法包括通过将尺寸测量步骤中的每个管或管的长度与每个管或管测量的长度进行比较来确定外管或管的存在的步骤 在尺寸测量步骤中与每个管或管相关联的实际称量和长度测量步骤,通过将在重量计算步骤中计算的每个管或管的重量与 在实际称量和长度测量步骤中测量的每个管或管的重量,其在重量计算步骤中与每个管或管相关联,以及用于基于每个管的材料确定外来管或管的存在的步骤 在材料确定步骤中确定的管或管。
    • 7. 发明申请
    • FOREIGN PIPE OR TUBE DETERMINING METHOD
    • 外管或管道测定方法
    • US20100300167A1
    • 2010-12-02
    • US12738103
    • 2008-11-26
    • Hajime OsakoTakeshi Maekawa
    • Hajime OsakoTakeshi Maekawa
    • B21C51/00
    • G01B21/02B21B23/00B21B38/04G01B21/08G01B21/10G01G17/00
    • There is provided a foreign pipe or tube determining method capable of accurately determining a foreign pipe or tube. The foreign pipe or tube determining method in accordance with the present invention includes a step for determining the presence of a foreign pipe or tube by comparing the length of each pipe or tube in a size measuring step with the length of each pipe or tube measured in an actual weighing and length measuring step, which is associated with each pipe or tube in the size measuring step, a step for determining the presence of a foreign pipe or tube by comparing the weight of each pipe or tube calculated in a weight calculating step with the weight of each pipe or tube measured in the actual weighing and length measuring step, which is associated with each pipe or tube in a weight calculating step, and a step for determining the presence of a foreign pipe or tube based on the material of each pipe or tube determined in a material determining step.
    • 提供了能够精确地确定外部管或管的外来管或管确定方法。 根据本发明的外管管确定方法包括通过将尺寸测量步骤中的每个管或管的长度与每个管或管测量的长度进行比较来确定外管或管的存在的步骤 在尺寸测量步骤中与每个管或管相关联的实际称量和长度测量步骤,通过将在重量计算步骤中计算的每个管或管的重量与 在实际称量和长度测量步骤中测量的每个管或管的重量,其在重量计算步骤中与每个管或管相关联,以及用于基于每个管的材料确定外来管或管的存在的步骤 在材料确定步骤中确定的管或管。
    • 9. 发明授权
    • Method of manufacturing seamless pipe and tube
    • 制造无缝管和管的方法
    • US08601852B2
    • 2013-12-10
    • US12232926
    • 2008-09-26
    • Hajime Osako
    • Hajime Osako
    • B21C37/06B21D31/00B21B19/04
    • B21B23/00B21B17/14B21B19/04C21D1/18C21D8/10C21D9/08
    • It is a problem of the present invention to provide a method of manufacturing the seamless pipes having better mechanical properties, by means of a pipe manufacturing method with large energy-saving effect to continuously carry out processes from pierce-rolling to heat treatment.A method of manufacturing a seamless pipe comprising the steps of a pierce-rolling process, elongation rolling process, sizing process, reheating process, quenching process and tempering process, wherein the sizing process is completed with a temperature of the seamless pipe not less than 600° C. but less than 800° C., the seamless pipe is charged into a reheating furnace with a temperature not less than 400° C. and is reheated with a temperature not less than Ac3 transformation temperature but not greater than 1000° C. in the reheating process.
    • 本发明的问题在于提供一种具有较好的机械性能的无缝管的制造方法,通过具有大的节能效果的管材制造方法,连续进行从穿孔轧制到热处理的工序。 一种无缝管的制造方法,其特征在于,包括以下步骤:穿孔轧制法,伸长轧制法,上浆工序,再加热处理,淬火处理和回火处理,其中上浆过程以无缝管的温度不小于600 ℃,但小于800℃,将无缝管装入温度不低于400℃的再加热炉中,并在不低于Ac 3相变温度但不大于1000℃的温度下再加热。 在再加热过程中。
    • 10. 发明授权
    • Method for producing duplex stainless steel pipe, method for straightening, method for regulating strength, and method for operating straightener
    • 双相不锈钢管的制造方法,矫正方法,强度调节方法以及矫直机的使用方法
    • US08006528B2
    • 2011-08-30
    • US12458508
    • 2009-07-14
    • Hajime Osako
    • Hajime Osako
    • B21B19/12
    • B21D3/04B21D3/02
    • In straightening a duplex stainless steel pipe on a multi-roll pipe straightener, the value of A defined by the formula (1) is set to not more than 2.0% when it is not necessary to improve the mechanical strength of the pipe, and the value of A is set to more than 2.0% but not more than 3% when it is necessary to improve the mechanical strength of the pipe. Thereby, the mechanical strength of the duplex stainless steel pipe is regulated, A=(Di−Hi)/Di  (1) where each of the symbols in the formula (1) indicates the following: Di: the outer diameter (mm) of the pipe at an entry side of an i-th stand in the straightener, and Hi: the gap (mm) between groove bottom portions of the rolls at an i-th stand in the straightener.
    • 在多辊矫直机上矫直双相不锈钢管时,当不需要提高管道的机械强度时,由式(1)定义的A的值设定为不大于2.0%, 当需要提高管的机械强度时,A的值设定为大于2.0%但不超过3%。 因此,双相不锈钢管的机械强度被调节,式(1)中的每个符号表示如下:A =(Di-Hi)/ Di(1):Di:外径(mm) 矫直机中第i台入口侧的管道,Hi:在矫直机中的第i台上的辊的槽底部之间的间隙(mm)。