会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • Collocation translation from monolingual and available bilingual corpora
    • 单语和双语语料库的翻译
    • US20060282255A1
    • 2006-12-14
    • US11152540
    • 2005-06-14
    • Yajuan LuJianfeng GaoMing ZhouJohn ChenMu Li
    • Yajuan LuJianfeng GaoMing ZhouJohn ChenMu Li
    • G06F17/28
    • G06F17/2827
    • A system and method of extracting collocation translations is presented. The methods include constructing a collocation translation model using monolingual source and target language corpora as well as bilingual corpus, if available. The collocation translation model employs an expectation maximization algorithm with respect to contextual words surrounding collocations. The collocation translation model can be used later to extract a collocation translation dictionary. Optional filters based on context redundancy and/or bi-directional translation constrain can be used to ensure that only highly reliable collocation translations are included in the dictionary. The constructed collocation translation model and the extracted collocation translation dictionary can be used later for further natural language processing, such as sentence translation.
    • 提出了一种提取搭配翻译的系统和方法。 这些方法包括使用单语源语言和目标语言语料库以及双语语料库(如果可用)来构建搭配翻译模型。 搭配翻译模型采用围绕搭配的上下文单词的期望最大化算法。 搭配翻译模型可以随后用于提取搭配翻译字典。 可以使用基于上下文冗余和/或双向转换约束的可选过滤器来确保字典中仅包含高度可靠的并置转换。 构建的搭配翻译模型和提取的搭配翻译词典可以稍后用于进一步的自然语言处理,如句子翻译。
    • 10. 发明授权
    • Structured cross-lingual relevance feedback for enhancing search results
    • 结构化的跨语言相关性反馈,以增强搜索结果
    • US08645289B2
    • 2014-02-04
    • US12970879
    • 2010-12-16
    • Paul Nathan BennettJianfeng GaoJagadeesh JagarlamudiKristen Patricia Parton
    • Paul Nathan BennettJianfeng GaoJagadeesh JagarlamudiKristen Patricia Parton
    • G06F15/18
    • G06F17/30669G06F17/30675
    • A “Cross-Lingual Unified Relevance Model” provides a feedback model that improves a machine-learned ranker for a language with few training resources, using feedback from a more complete ranker for a language that has more training resources. The model focuses on linguistically non-local queries, such as “world cup” (English language/U.S. market) and “copa mundial” (Spanish language/Mexican market), that have similar user intent in different languages and markets or regions, thus allowing the low-resource ranker to receive direct relevance feedback from the high-resource ranker. Among other things, the Cross-Lingual Unified Relevance Model differs from conventional relevancy-based techniques by incorporating both query- and document-level features. More specifically, the Cross-Lingual Unified Relevance Model generalizes existing cross-lingual feedback models, incorporating both query expansion and document re-ranking to further amplify the signal from the high-resource ranker to enable a learning to rank approach based on appropriately labeled training data.
    • “跨语言统一相关性模型”提供了一种反馈模型,可以为少数培训资源的语言改进机器学习游戏者,使用更完整的游戏者的反馈来获得具有更多培训资源的语言。 该模式侧重于语言上的非本地查询,例如“世界杯”(英语/美国市场)和“复合世界”(西班牙语/墨西哥市场),在不同语言和市场或区域具有类似的用户意图,因此 允许低资源游击队员接收来自高资源队员的直接相关反馈。 其中,跨语言统一相关性模型与传统的相关性技术不同,包括查询和文档级功能。 更具体地说,跨语言统一相关性模型概括了现有的跨语言反馈模型,其中包括查询扩展和文档重新排序,以进一步放大来自高资源游戏者的信号,以使学习能够基于适当标记的训练进行排名 数据。