会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of manufacturing an ion-exchanged glass article
    • 离子交换玻璃制品的制造方法
    • US08919150B2
    • 2014-12-30
    • US13608659
    • 2012-09-10
    • Mitsugu ImaiKazuaki HashimotoOsamu Sugihara
    • Mitsugu ImaiKazuaki HashimotoOsamu Sugihara
    • C03C21/00G11B5/84C03C3/083G11B5/71
    • G11B5/8404C03C3/083C03C21/002
    • An ion-exchanged glass article manufacturing method includes an ion-exchange step of bringing a glass article with a composition containing Li into contact with a molten salt dissolved solution containing an alkali metal element having an ionic radius larger than an ionic radius of the Li contained in the glass article, thereby ion-exchanging the Li in the glass article with the alkali metal element in the molten salt dissolved solution. At least one kind of additive selected from the group consisting of NaF, KF, K3AlF6, Na2CO3, NaHCO3, K2CO3, KHCO3, Na2SO4, K2SO4, KAl(SO4)2, Na3PO4, and K3PO4 is added to the molten salt dissolved solution so that the ion-exchange step is carried out while the additive is in a solid state.
    • 离子交换玻璃制品的制造方法包括使含有Li的组合物的玻璃制品与含有离子半径大于Li的离子半径的碱金属元素的熔融盐溶解溶液接触的离子交换工序 在玻璃制品中,使熔融盐溶解溶液中的碱金属元素与玻璃制品中的Li离子交换。 将至少一种选自NaF,KF,K 3 AlF 6,Na 2 CO 3,NaHCO 3,K 2 CO 3,KHCO 3,Na 2 SO 4,K 2 SO 4,KAl(SO 4)2,Na 3 PO 4和K 3 PO 4的添加剂加入到熔融盐溶解溶液中,使得 离子交换步骤在添加剂处于固态的同时进行。
    • 5. 发明授权
    • Infrared-ray thermal image analyzer
    • 红外线图像分析仪
    • US08462990B2
    • 2013-06-11
    • US12808923
    • 2008-10-21
    • Yukio AkashiKazuaki HashimotoShogo Hayashi
    • Yukio AkashiKazuaki HashimotoShogo Hayashi
    • G06K9/00
    • G01N25/72G01N33/383G06T7/0004G06T2207/10048G06T2207/30108G06T2207/30184
    • The IR camera (10) takes an IR thermal image of a surface of the structure (40). In the IR thermal image, temperature gradient is superposed besides temperature difference between non-defective and defective regions of the structure. The image processing unit (21) of the analysis unit (20) produces an image indicating distribution of a temperature variation other than a temperature gradient by extracting the distribution of the temperature variation from the IR thermal image. The image display unit (30) displays the image produced by the image processing unit (21). Since the distribution of the temperature variation other than the temperature gradient is extracted from the IR thermal image, a temperature difference between defective and non-defective regions in the structure (40) can be clearly displayed. Therefore, even if there exists a temperature gradient on the structure surface, the defect location in the structure can be easily determined.
    • IR摄像机(10)拍摄结构(40)的表面的IR热图像。 在红外热像中,结构的无缺陷区域和缺陷区域之间的温度差除了温度梯度外, 分析单元(20)的图像处理单元(21)通过从IR热图像中提取温度变化的分布,产生指示温度梯度以外的温度变化分布的图像。 图像显示单元(30)显示由图像处理单元(21)产生的图像。 由于从IR热图像中提取除了温度梯度以外的温度变化的分布,因此可以清楚地显示结构(40)中的有缺陷区域与非缺陷区域之间的温度差。 因此,即使结构表面存在温度梯度,也可以容易地确定结构中的缺陷位置。
    • 6. 发明授权
    • Optical glass
    • 光学玻璃
    • US5744409A
    • 1998-04-28
    • US778675
    • 1997-01-03
    • Kazuaki HashimotoKoichi Sato
    • Kazuaki HashimotoKoichi Sato
    • C03C3/064C03C3/068C03C3/089C03C3/091C03C3/095C03C3/078C03C4/20
    • C03C3/089C03C3/064C03C3/068C03C3/091C03C3/095Y10S501/903
    • An optical glass containing, as glass components, 30.about.55 wt % of SiO.sub.2, 5.about.30 wt % of B.sub.2 O.sub.3, the total amount of SiO.sub.2 and B.sub.2 O.sub.3 being 56.about.70 wt % and the SiO.sub.2 /B.sub.2 O.sub.3 weight ratio being 1.3.about.12.0, 7.about.12 wt % of Li.sub.2 O, in which 7 wt % is excluded, 0.about.5 wt % of Na.sub.2 O, 0.about.5 wt % of K.sub.2 O, the total amount of Li.sub.2 O, Na.sub.2 O and K.sub.2 O being 7 to 12 wt % in which 7 wt % is excluded, 10.about.30 wt % of BaO, 0.about.10 wt % of MgO, 0.about.20 wt % of CaO, 0.about.20 wt % of SrO, and 0.about.20 wt % of ZnO the total amount of BaO, MgO, CaO, SrO and ZnO being 10.about.30 wt %, and the total amount of SiO.sub.2, B.sub.2 O.sub.3, Li.sub.2 O and BaO being at least 72 wt %.
    • 将玻璃成分含有30重量%SiO 2,5重量%B 2 O 3,SiO 2和B 2 O 3的总量为56重量%,SiO 2 / B 2 O 3重量比为13比6的玻璃成分的光学玻璃, 7差异12重量%的Li2O,其中排除7重量%,0分别为5重量%的Na 2 O,0分数5重量%的K 2 O,Li 2 O,Na 2 O和K 2 O的总量为7〜12重量%,其中7 重量%不包括在内,10重量%的BaO,0分别为10重量%的MgO,0分率20重量%的CaO,0分解20重量%的SrO和0分子量20重量%的ZnO BaO的总量 ,MgO,CaO,SrO和ZnO为10重量%,SiO 2,B 2 O 3,Li 2 O和BaO的总量为至少72重量%。
    • 10. 发明授权
    • Method and apparatus for determining structural damage depth, and method and apparatus for determining structural damage treatment
    • 用于确定结构损伤深度的方法和装置,以及用于确定结构损伤处理的方法和装置
    • US08725430B2
    • 2014-05-13
    • US12866510
    • 2009-03-17
    • Yukio AkashiKazuaki HashimotoShogo Hayashi
    • Yukio AkashiKazuaki HashimotoShogo Hayashi
    • G01B5/28G01N25/72
    • G01N25/72
    • A correlation is preliminarily obtained between a depth of damage and a ratio between a temperature gradient in temperature distribution on a surface of an area containing the damage and a temperature difference between a maximum temperature and a minimum temperature in the temperature distribution. The temperature distribution on the surface of the area containing the damage in the structure is then measured. Once the temperature distribution on the structure surface is obtained, attention is focused on temperature distribution between two points including the damaged area, so that a temperature difference between a maximum temperature and a minimum temperature in the distribution is obtained, and further a temperature gradient of an interval exhibiting temperature variation equal to or higher than a predetermined level is obtained. The ratio between the temperature difference and the temperature gradient thus obtained is computed, and the depth of the damage corresponding to the ratio is determined based on the correlation obtained in the first step. The depth of the damage can be estimated by the processing above.
    • 在损伤深度与包含损伤的区域的表面上的温度分布的温度梯度与温度分布中的最高温度和最低温度之间的温度差之间的比率之间预先获得相关性。 然后测量包含结构中损坏的区域的表面上的温度分布。 一旦获得了结构表面的温度分布,则注意力集中在包括损伤区域在内的两点之间的温度分布,从而获得分布中的最高温度和最低温度之间的温度差,并且进一步获得温度梯度 获得等于或高于预定水平的温度变化的间隔。 计算出如此获得的温度差和温度梯度之间的比率,并且基于在第一步骤中获得的相关性来确定与比率相对应的损伤深度。 损坏的深度可以通过上面的处理来估计。