会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Particle separation and concentration system
    • 颗粒分离和浓缩系统
    • US09433880B2
    • 2016-09-06
    • US11606460
    • 2006-11-30
    • Meng H. LeanJeonggi SeoAshutosh KoleNorine E. ChangScott Jong Ho Limb
    • Meng H. LeanJeonggi SeoAshutosh KoleNorine E. ChangScott Jong Ho Limb
    • B03B5/00B01D21/26B03B5/32B04C1/00G01N15/02G01N15/04
    • B01D21/265B01D2221/10B01D2311/04B01D2311/16B01D2321/2025B03B5/32B04C1/00G01N15/0255G01N15/04B01D2311/2676
    • This invention is based on size and mass separation of suspended particles, including biological matter, which are made to flow in a spiral channel. On the spiral sections, the inward directed transverse pressure field from fluid shear competes with the outward directed centrifugal force to allow for separation of particles. At high velocity, centrifugal force dominates and particles move outward. At low velocities, transverse pressure dominates and the particles move inward. The magnitudes of the two opposing forces depend on flow velocity, particle size, radius of curvature of the spiral section, channel dimensions, and viscosity of the fluid. At the end of the spiral channel, a parallel array of outlets collects separated particles. For any particle size, the required channel dimension is determined by estimating the transit time to reach the side-wall. This time is a function of flow velocity, channel width, viscosity, and radius of curvature. Larger particles may reach the channel wall earlier than the smaller particles which need more time to reach the side wall. Thus a spiral channel may be envisioned by placing multiple outlets along the channel. This technique is inherently scalable over a large size range from sub-millimeter down to 1 μm.
    • 本发明基于使得在螺旋通道中流动的悬浮颗粒(包括生物物质)的尺寸和质量分离。 在螺旋段上,来自流体剪切的向内定向的横向压力场与向外的定向离心力相竞争,以允许颗粒分离。 在高速度下,离心力主导,颗粒向外移动。 在低速度下,横向压力占主导,颗粒向内移动。 两个相对力的大小取决于流速,粒径,螺旋截面的曲率半径,通道尺寸和流体的粘度。 在螺旋通道的末端,平行排列的出口收集分离的颗粒。 对于任何颗粒尺寸,所需的通道尺寸通过估计到达侧壁的通行时间来确定。 这个时间是流速,通道宽度,粘度和曲率半径的函数。 较大的颗粒可能比需要更多时间到达侧壁的较小颗粒更早地到达通道壁。 因此,可以通过沿着通道设置多个出口来设想螺旋通道。 这种技术在从亚毫米下降到1微米的大尺寸范围内具有固有的可扩展性。
    • 10. 发明申请
    • Particle separation and concentration system
    • 颗粒分离和浓缩系统
    • US20080128331A1
    • 2008-06-05
    • US11606460
    • 2006-11-30
    • Meng H. LeanJeonggi SeoAshutosh KoleNorine E. ChangScott Jong Ho Limb
    • Meng H. LeanJeonggi SeoAshutosh KoleNorine E. ChangScott Jong Ho Limb
    • B03B5/00
    • B01D21/265B01D2221/10B01D2311/04B01D2311/16B01D2321/2025B03B5/32B04C1/00G01N15/0255G01N15/04B01D2311/2676
    • This invention is based on size and mass separation of suspended particles, including biological matter, which are made to flow in a spiral channel. On the spiral sections, the inward directed transverse pressure field from fluid shear competes with the outward directed centrifugal force to allow for separation of particles. At high velocity, centrifugal force dominates and particles move outward. At low velocities, transverse pressure dominates and the particles move inward. The magnitudes of the two opposing forces depend on flow velocity, particle size, radius of curvature of the spiral section, channel dimensions, and viscosity of the fluid. At the end of the spiral channel, a parallel array of outlets collects separated particles. For any particle size, the required channel dimension is determined by estimating the transit time to reach the side-wall. This time is a function of flow velocity, channel width, viscosity, and radius of curvature. Larger particles may reach the channel wall earlier than the smaller particles which need more time to reach the side wall. Thus a spiral channel may be envisioned by placing multiple outlets along the channel. This technique is inherently scalable over a large size range from sub-millimeter down to 1 μm.
    • 本发明基于使得在螺旋通道中流动的悬浮颗粒(包括生物物质)的尺寸和质量分离。 在螺旋段上,来自流体剪切的向内定向的横向压力场与向外的定向离心力相竞争,以允许颗粒分离。 在高速度下,离心力主导,颗粒向外移动。 在低速度下,横向压力占主导,颗粒向内移动。 两个相对力的大小取决于流速,粒径,螺旋截面的曲率半径,通道尺寸和流体的粘度。 在螺旋通道的末端,平行排列的出口收集分离的颗粒。 对于任何颗粒尺寸,所需的通道尺寸通过估计到达侧壁的通行时间来确定。 这个时间是流速,通道宽度,粘度和曲率半径的函数。 较大的颗粒可能比需要更多时间到达侧壁的较小颗粒更早地到达通道壁。 因此,可以通过沿着通道设置多个出口来设想螺旋通道。 这种技术在从亚毫米下降到1毫米的大尺寸范围内固有地可扩展。