会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Interconnect structure and method for Cu/ultra low k integration
    • Cu /超低k集成的互连结构和方法
    • US08405215B2
    • 2013-03-26
    • US12906580
    • 2010-10-18
    • Chih-Chao YangConal E. Murray
    • Chih-Chao YangConal E. Murray
    • H01L23/52
    • H01L21/76808H01L21/76805H01L21/76814H01L21/76835H01L21/76843
    • A semiconductor structure is provided that includes a lower interconnect level including a first dielectric material having at least one conductive feature embedded therein; a dielectric capping layer located on the first dielectric material and some, but not all, portions of the at least one conductive feature; and an upper interconnect level including a second dielectric material having at least one conductively filled via and an overlying conductively filled line disposed therein, wherein the conductively filled via is in contact with an exposed surface of the at least one conductive feature of the first interconnect level by an anchoring area. Moreover, the conductively filled via and conductively filled line of the inventive structure are separated from the second dielectric material by a single continuous diffusion barrier layer. As such, the second dielectric material includes no damaged regions in areas adjacent to the conductively filled line. A method of forming such an interconnect structure is also provided.
    • 提供了一种半导体结构,其包括下互连级,其包括具有嵌入其中的至少一个导电特征的第一介电材料; 位于所述第一电介质材料上的电介质覆盖层以及所述至少一个导电特征的一些但不是全部的部分; 以及包括具有至少一个导电填充通孔的第二介电材料和布置在其中的上覆导电填充线的上部互连水平,其中所述导电填充的通孔与所述第一互连水平的所述至少一个导电特征的暴露表面接触 通过锚定区域。 此外,本发明结构的导电填充通孔和导电填充线通过单个连续扩散阻挡层与第二介电材料分离。 因此,第二电介质材料在与导电填充线相邻的区域中不包括受损区域。 还提供了一种形成这种互连结构的方法。
    • 6. 发明授权
    • Air channel interconnects for 3-D integration
    • 空气通道互连用于3-D集成
    • US08198174B2
    • 2012-06-12
    • US12536176
    • 2009-08-05
    • Louis L. HsuBrian L. JiFei LiuConal E. Murray
    • Louis L. HsuBrian L. JiFei LiuConal E. Murray
    • H01L21/44
    • H01L23/467H01L21/76898H01L23/481H01L25/0657H01L25/50H01L2225/06513H01L2225/06541H01L2225/06589H01L2924/0002H01L2924/00
    • A three-dimensional (3D) chip stack structure and method of fabricating the structure thereof are provided. The 3D chip stack structure includes a plurality of vertically stacked chips which are interconnected and bonded together, wherein each of the vertically stacked chips include one or more IC device strata. The 3D chip stack structure further includes an air channel interconnect network embedded within the chip stack structure, and wherein the air channel interconnect network is formed in between at least two wafers bonded to each other of the vertically stacked wafers and in between at least two bonded wafers of the vertically stacked wafers at a bonding interface thereof. In addition, the 3D chip stack structure further includes one or more openings in a peripheral region of the chip stack structure that lead into and out of the air channel interconnect network, so that air can flow into and out of the air channel interconnect network through the one or more openings to remove heat from the chip stack structure.
    • 提供三维(3D)芯片堆叠结构及其结构的制造方法。 3D芯片堆叠结构包括互连并结合在一起的多个垂直堆叠的芯片,其中每个垂直堆叠的芯片包括一个或多个IC器件层。 3D芯片堆叠结构还包括嵌入在芯片堆叠结构内的空气通道互连网络,并且其中空气通道互连网络形成在至少两个晶片之间,所述至少两个晶片彼此接合在垂直堆叠的晶片之间,并且在至少两个结合 在其接合界面处的垂直堆叠的晶片的晶片。 此外,3D芯片堆叠结构还包括在芯片堆叠结构的外围区域中的一个或多个开口,其引入和流出空气通道互连网络,使得空气可以流入和流出空气通道互连网络,通过 一个或多个开口以从芯片堆叠结构移除热量。
    • 7. 发明申请
    • INTERCONNECT STRUCTURE AND METHOD FOR Cu/ULTRA LOW k INTEGRATION
    • Cu / ULTRA低k积分的互连结构和方法
    • US20110031623A1
    • 2011-02-10
    • US12906580
    • 2010-10-18
    • Chih-Chao YangConal E. Murray
    • Chih-Chao YangConal E. Murray
    • H01L23/52
    • H01L21/76808H01L21/76805H01L21/76814H01L21/76835H01L21/76843
    • A semiconductor structure is provided that includes a lower interconnect level including a first dielectric material having at least one conductive feature embedded therein; a dielectric capping layer located on the first dielectric material and some, but not all, portions of the at least one conductive feature; and an upper interconnect level including a second dielectric material having at least one conductively filled via and an overlying conductively filled line disposed therein, wherein the conductively filled via is in contact with an exposed surface of the at least one conductive feature of the first interconnect level by an anchoring area. Moreover, the conductively filled via and conductively filled line of the inventive structure are separated from the second dielectric material by a single continuous diffusion barrier layer. As such, the second dielectric material includes no damaged regions in areas adjacent to the conductively filled line. A method of forming such an interconnect structure is also provided.
    • 提供了一种半导体结构,其包括下互连级,其包括具有嵌入其中的至少一个导电特征的第一介电材料; 位于所述第一电介质材料上的电介质覆盖层以及所述至少一个导电特征的一些但不是全部的部分; 以及包括具有至少一个导电填充通孔的第二介电材料和布置在其中的上覆导电填充线的上部互连水平,其中所述导电填充的通孔与所述第一互连水平的所述至少一个导电特征的暴露表面接触 通过锚定区域。 此外,本发明结构的导电填充通孔和导电填充线通过单个连续扩散阻挡层与第二介电材料分离。 因此,第二电介质材料在与导电填充线相邻的区域中不包括受损区域。 还提供了一种形成这种互连结构的方法。
    • 9. 发明授权
    • p-FET with a strained nanowire channel and embedded SiGe source and drain stressors
    • 具有应变纳米线通道和嵌入式SiGe源极和漏极应力的p-FET
    • US08399314B2
    • 2013-03-19
    • US12731241
    • 2010-03-25
    • Guy CohenConal E. MurrayMichael J. Rooks
    • Guy CohenConal E. MurrayMichael J. Rooks
    • H01L29/267H01L21/84
    • H01L29/78696H01L29/0673H01L29/42392H01L29/7848H01L29/785
    • Techniques for embedding silicon germanium (e-SiGe) source and drain stressors in nanoscale channel-based field effect transistors (FETs) are provided. In one aspect, a method of fabricating a FET includes the following steps. A doped substrate having a dielectric thereon is provided. At least one silicon (Si) nanowire is placed on the dielectric. One or more portions of the nanowire are masked off leaving other portions of the nanowire exposed. Epitaxial germanium (Ge) is grown on the exposed portions of the nanowire. The epitaxial Ge is interdiffused with Si in the nanowire to form SiGe regions embedded in the nanowire that introduce compressive strain in the nanowire. The doped substrate serves as a gate of the FET, the masked off portions of the nanowire serve as channels of the FET and the embedded SiGe regions serve as source and drain regions of the FET.
    • 提供了在纳米级基于沟道的场效应晶体管(FET)中嵌入硅锗(e-SiGe)源极和漏极应力的技术。 一方面,制造FET的方法包括以下步骤。 提供其上具有电介质的掺杂衬底。 在电介质上放置至少一个硅(Si)纳米线。 掩模纳米线的一个或多个部分,使纳米线的其它部分暴露出来。 外延锗(Ge)生长在纳米线的暴露部分上。 外延Ge与纳米线中的Si相互扩散以形成纳米线中嵌入纳米线中的压应变的SiGe区域。 掺杂衬底用作FET的栅极,纳米线的掩蔽掉的部分用作FET的沟道,并且嵌入的SiGe区域用作FET的源极和漏极区域。