会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Probe position control system and method
    • 探头位置控制系统及方法
    • US20070272005A1
    • 2007-11-29
    • US11802624
    • 2007-05-24
    • Masayuki AbeMasahiro OtaYoshiaki SugimotoKenichi MoritaNoriaki OyabuSeizo MoritaOscar Custance
    • Masayuki AbeMasahiro OtaYoshiaki SugimotoKenichi MoritaNoriaki OyabuSeizo MoritaOscar Custance
    • G12B21/20G01N13/10
    • G01Q30/06G01Q70/04
    • The present invention provides a technique for eliminating the effect of the thermal drift and other variances and to improve the observing or manipulating accuracy of a scanning probe microscope or atom manipulator by using the technique to correct the aforementioned change in the relative position of the probe and the sample due to heat or other factors during the observation or manipulation. To obtain an image of the sample surface at the atomic level or perform a certain manipulation on an atom on the sample surface, the present invention can be applied to a probe position control method for controlling the relative position of the probe and the sample while measuring an interaction between the objective atom on the sample surface and the tip of the probe. In the present method, the relative position of the probe and the sample are changed while the probe is oscillated relative to the sample in two directions parallel to the sample surface at frequencies of f1 and f2 (S1a). Meanwhile, a point (or characteristic point) where the frequencies f1 and f2 disappear from the measured value of the interaction working in the direction perpendicular to the sample surface is detected (S1b). Then, the relative movement of the probe and the sample is controlled so that the measurement value thereby detected is maintained (i.e. the characteristic point is tracked; S1c), and the speed of the aforementioned relative movement is determined (S1d). Subsequently, the relative position control is corrected using the detected speed (S2).
    • 本发明提供了一种用于消除热漂移和其它方差的影响的技术,并且通过使用该技术来校正探针的相对位置的上述变化来提高扫描探针显微镜或原子操纵器的观察或操纵精度,以及 在观察或操纵期间由于热或其他因素导致的样品。 为了获得原子级别的样品表面的图像或对样品表面上的原子进行一定的操作,本发明可以应用于用于在测量时控制探针和样品的相对位置的探针位置控制方法 样品表面上的目标原子与探针尖端之间的相互作用。 在本方法中,探针和样品的相对位置在f 1和f 2的频率下相对于样品在平行于样品表面的两个方向上振荡的同时发生变化, 2(S 1a)。 同时,检测频率f 1和f 2 2的点(或特征点)从垂直于样品表面的方向上工作的相互作用的测量值消失 (S 1b)。 然后,控制探头和样品的相对移动,使得由此检测到的测量值被维持(即跟踪特征点; S1c),并且确定上述相对移动的速度(S1d) 。 随后,使用检测速度来校正相对位置控制(S 2)。
    • 2. 发明授权
    • Probe position control system and method
    • 探头位置控制系统及方法
    • US07703314B2
    • 2010-04-27
    • US11802624
    • 2007-05-24
    • Masayuki AbeMasahiro OtaYoshiaki SugimotoKenichi MoritaNoriaki OyabuSeizo MoritaOscar Custance
    • Masayuki AbeMasahiro OtaYoshiaki SugimotoKenichi MoritaNoriaki OyabuSeizo MoritaOscar Custance
    • G01B5/28
    • G01Q30/06G01Q70/04
    • The present invention provides a technique for eliminating the effect of the thermal drift and other variances and to improve the observing or manipulating accuracy of a scanning probe microscope or atom manipulator by using the technique to correct the aforementioned change in the relative position of the probe and the sample due to heat or other factors during the observation or manipulation. To obtain an image of the sample surface at the atomic level or perform a certain manipulation on an atom on the sample surface, the present invention can be applied to a probe position control method for controlling the relative position of the probe and the sample while measuring an interaction between the objective atom on the sample surface and the tip of the probe. In the present method, the relative position of the probe and the sample are changed while the probe is oscillated relative to the sample in two directions parallel to the sample surface at frequencies of f1 and f2 (S1a). Meanwhile, a point (or characteristic point) where the frequencies f1 and f2 disappear from the measured value of the interaction working in the direction perpendicular to the sample surface is detected (S1b). Then, the relative movement of the probe and the sample is controlled so that the measurement value thereby detected is maintained (i.e. the characteristic point is tracked; S1c), and the speed of the aforementioned relative movement is determined (S1d). Subsequently, the relative position control is corrected using the detected speed (S2).
    • 本发明提供了一种用于消除热漂移和其它方差的影响的技术,并且通过使用该技术来校正探针的相对位置的上述变化来提高扫描探针显微镜或原子操纵器的观察或操纵精度,以及 在观察或操纵期间由于热或其他因素导致的样品。 为了获得原子级别的样品表面的图像或对样品表面上的原子进行一定的操作,本发明可以应用于用于在测量时控制探针和样品的相对位置的探针位置控制方法 样品表面上的目标原子与探针尖端之间的相互作用。 在本方法中,探针和样品的相对位置在f1和f2频率(S1a)处探针相对于样品在平行于样品表面的两个方向上振荡时改变。 同时,检测频率f1和f2从与样品表面垂直的方向上工作的相互作用的测量值消失的点(或特征点)(S1b)。 然后,控制探头和样本的相对运动,使得维持测量值(即跟踪特征点; S1c),并确定上述相对运动的速度(S1d)。 随后,使用检测的速度来校正相对位置控制(S2)。
    • 3. 发明授权
    • Atomic force microscope and interaction force measurement method using atomic force microscope
    • 原子力显微镜和相互作用力测量方法使用原子力显微镜
    • US07975316B2
    • 2011-07-05
    • US12523661
    • 2008-01-07
    • Masahiro OtaNoriaki OyabuMasayuki AbeOscar CustanceYoshiaki SugimotoSeizo Morita
    • Masahiro OtaNoriaki OyabuMasayuki AbeOscar CustanceYoshiaki SugimotoSeizo Morita
    • G01B5/28
    • G01Q60/32G01Q30/04Y10S977/863
    • A frequency shift Δf obtained by an FM-AFM can be expressed by a simple linear coupling of a ΔfLR derived from a long-range interaction force and a ΔfSR derived from a short-range interaction force. Given this factor, a Δf curve on an atomic defect and a Δf curve on a target atom on the sample surface are each measured for only a relatively short range scale (S1 and S2), and a difference Δf curve of those two curves is obtained (S3). Since the difference Δf curve is derived only from a short-range interaction force, a known conversion operation is applied to this curve obtain an F curve which illustrates the relationship between the force and the distance Z, and then the short-range interaction force on the target atom is obtained from the F curve (S4). Since the range scale in measuring the Δf curve can be narrowed, the measurement time can be shortened, and since the conversion from the Δf curve into F curve is required only once, the computational time can also be shortened. Consequently, in obtaining the short-range interaction force which acts between the atom on the sample surface and the probe, the time required for the Δf curve's measurement and the computational time are shortened, which leads to accuracy improvement and throughput enhancement.
    • 通过FM-AFM获得的频移和Dgr f可以通过从远程相互作用力得到的&Dgr; fLR和从短程相互作用力得到的&Dgr; fSR的简单线性耦合来表示。 考虑到这个因素,样品表面上的原子缺陷和目标原子上的&Dgr; f曲线每个都只测量相对较短的范围尺度(S1和S2),并且差分Dgr f曲线 得到这两条曲线(S3)。 由于差值Dgr f曲线仅来自短距离相互作用力,因此将已知的转换操作应用于该曲线,获得F曲线,该F曲线说明了力与距离Z之间的关系,然后是短距离相互作用 从F曲线获得目标原子上的力(S4)。 由于可以缩小&Dgr。f曲线的测量范围,所以可以缩短测量时间,由于从&Dgr。f曲线到F曲线的转换只需要一次,所以计算时间也可以缩短。 因此,在获得样品表面上的原子和探针之间作用的短程相互作用力时,缩短了&Dgr。f曲线测量所需的时间和计算时间,从而提高了精度和提高了生产率。
    • 4. 发明申请
    • ATOMIC FORCE MICROSCOPE AND INTERACTION FORCE MEASUREMENT METHOD USING ATOMIC FORCE MICROSCOPE
    • 使用原子力显微镜的原子力显微镜和相互作用力测量方法
    • US20100071099A1
    • 2010-03-18
    • US12523661
    • 2008-01-07
    • Masahiro OtaNoriaki OyabuMasayuki AbeOscar CustanceYoshiaki SugimotoSeizo Morita
    • Masahiro OtaNoriaki OyabuMasayuki AbeOscar CustanceYoshiaki SugimotoSeizo Morita
    • G01Q60/24
    • G01Q60/32G01Q30/04Y10S977/863
    • A frequency shift Δf obtained by an FM-AFM can be expressed by a simple linear coupling of a ΔfLR derived from a long-range interaction force and a ΔfSR derived from a short-range interaction force. Given this factor, a Δf curve on an atomic defect and a Δf curve on a target atom on the sample surface are each measured for only a relatively short range scale (S1 and S2), and a difference Δf curve of those two curves is obtained (S3). Since the difference Δf curve is derived only from a short-range interaction force, a known conversion operation is applied to this curve obtain an F curve which illustrates the relationship between the force and the distance Z, and then the short-range interaction force on the target atom is obtained from the F curve (S4). Since the range scale in measuring the Δf curve can be narrowed, the measurement time can be shortened, and since the conversion from the Δf curve into F curve is required only once, the computational time can also be shortened. Consequently, in obtaining the short-range interaction force which acts between the atom on the sample surface and the probe, the time required for the Δf curve's measurement and the computational time are shortened, which leads to accuracy improvement and throughput enhancement.
    • 通过FM-AFM获得的频移和Dgr f可以通过从远程相互作用力得到的&Dgr; fLR和从短程相互作用力得到的&Dgr; fSR的简单线性耦合来表示。 考虑到这个因素,样品表面上的原子缺陷和目标原子上的&Dgr; f曲线每个都只测量相对较短的范围尺度(S1和S2),并且差分Dgr f曲线 得到这两条曲线(S3)。 由于差值Dgr f曲线仅来自短距离相互作用力,因此将已知的转换操作应用于该曲线,获得F曲线,该F曲线说明了力与距离Z之间的关系,然后是短距离相互作用 从F曲线获得目标原子上的力(S4)。 由于可以缩小&Dgr。f曲线的测量范围,所以可以缩短测量时间,由于从&Dgr。f曲线到F曲线的转换只需要一次,所以计算时间也可以缩短。 因此,在获得样品表面上的原子和探针之间作用的短程相互作用力时,缩短了&Dgr。f曲线测量所需的时间和计算时间,从而提高了精度和提高了生产率。
    • 8. 发明授权
    • Apparatus for extracting the contents from a refill pouch
    • 用于从填充袋提取内容物的装置
    • US08220666B2
    • 2012-07-17
    • US12231262
    • 2008-08-28
    • Masayuki Abe
    • Masayuki Abe
    • B67D7/06
    • B65D75/56A47K5/1204B05B11/00412B05B11/3015B05B11/3032B05B11/3045
    • An apparatus for extracting the contents from a refill pouch comprises a holding member for holding the pouch with its extraction port facing downward, and a pump attached to the extraction port of the pouch. The pump has a pump body defining a housing space having an inlet opening and an outlet opening, an inlet-side valve which communicates with the extraction port to open and close the inlet opening so that the contents can be introduced into the housing space from the pouch, and an outlet-side valve to open and close the outlet opening so that the contents in the housing space can be discharged through a nozzle that communicates with the outlet-side valve. The pump wall portion is constituted by a resiliently compressible, restorable and flexible material so that the contents in the housing space can be extracted through the nozzle by manually squeezing the pump wall portion thereby pressurizing the housing space.
    • 用于从再填充袋提取内容物的装置包括:保持构件,其用于将其提取口朝下的方式保持,并且附接到袋的提取口的泵。 泵具有限定具有入口开口和出口开口的容纳空间的泵体,入口侧阀与抽出口连通以打开和关闭入口开口,使得内容物可以从容纳空间引入到容纳空间中 袋和出口侧阀,以打开和关闭出口开口,使得容纳空间中的内容物可以通过与出口侧阀连通的喷嘴排出。 泵壁部分由弹性可压缩,可恢复和柔性的材料构成,使得通过手动挤压泵壁部分从而使壳体空间加压,能够通过喷嘴抽出容纳空间中的内容物。
    • 9. 发明申请
    • IMAGE PROJECTION APPARATUS
    • 图像投影设备
    • US20120139889A1
    • 2012-06-07
    • US13308924
    • 2011-12-01
    • Masayuki Abe
    • Masayuki Abe
    • G09G5/00G09G3/36
    • G09G3/3611G09G3/001G09G3/3696G09G2310/06G09G2320/0209G09G2320/0242G09G2320/0673H04N9/312
    • An image projection apparatus is disclosed which projects an image having a good color by reducing the influence of a lateral electric field in a liquid crystal display element (LCD). The apparatus includes three LCDs, each including two opposite electrodes. As the voltage applied to a liquid crystal layer is increased, retardation provided for light in each color band is increased. A controller controls an electrode application voltage in the first LCD such that, in a white display state, a liquid crystal application voltage (LCAV) in the first LCD is lower than the LCAVs in the second and third LCDs, and such that, in a black display state, the LCAV in the first LCD is higher than the LCAVs in the second and third LCDs and has a value from 1% to 30% of the LCAV in the first LCD in the white display state.
    • 公开了一种通过减少液晶显示元件(LCD)中的横向电场的影响来投射具有良好颜色的图像的图像投影装置。 该装置包括三个LCD,每个LCD包括两个相对的电极。 随着施加到液晶层的电压增加,每个色带中的光的延迟增加。 控制器控制第一LCD中的电极施加电压,使得在白色显示状态下,第一LCD中的液晶施加电压(LCAV)低于第二和第三LCD中的LCAV,并且在 黑显示状态时,第一LCD中的LCAV高于第二和第三LCD中的LCAV,并且在白显示状态下的第一LCD中的LCAV的值为1%至30%。