会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • FIELD EFFECT TRANSISTOR AND METHOD OF MANUFACTURING THE SAME
    • 场效应晶体管及其制造方法
    • US20110227093A1
    • 2011-09-22
    • US13150574
    • 2011-06-01
    • Masahiro HIKITAHidetoshi ISHIDATetsuzo UEDA
    • Masahiro HIKITAHidetoshi ISHIDATetsuzo UEDA
    • H01L29/20H01L21/337H01L29/808
    • H01L29/7786H01L29/1066H01L29/2003H01L29/205H01L29/41766H01L29/66462H01L29/808
    • The present invention has an object to provide an FET and a method of manufacturing the FET that are capable of increasing the threshold voltage as well as decreasing the on-resistance. The FET of the present invention includes a first undoped GaN layer; a first undoped AlGaN layer formed on the first undoped GaN layer, having a band gap energy greater than that of the first undoped GaN layer; a second undoped GaN layer formed on the first undoped AlGaN layer; a second undoped AlGaN layer formed on the second undoped GaN layer, having a band gap energy greater than that of the second undoped GaN layer; a p-type GaN layer formed in the recess of the second undoped AlGaN layer; a gate electrode formed on the p-type GaN layer; and a source electrode and a drain electrode which are formed in both lateral regions of the gate electrode, wherein a channel is formed at the heterojunction interface between the first undoped GaN layer and the first undoped AlGaN layer.
    • 本发明的目的是提供一种能够增加阈值电压以及降低导通电阻的FET和FET的制造方法。 本发明的FET包括第一未掺杂的GaN层; 形成在第一未掺杂的GaN层上的第一未掺杂的AlGaN层,其带隙能量大于第一未掺杂的GaN层的带隙能量; 形成在第一未掺杂的AlGaN层上的第二未掺杂的GaN层; 形成在所述第二未掺杂GaN层上的第二未掺杂AlGaN层,具有大于所述第二未掺杂GaN层的带隙能量的带隙能量; 形成在第二未掺杂AlGaN层的凹部中的p型GaN层; 形成在p型GaN层上的栅电极; 以及形成在所述栅电极的两个横向区域中的源电极和漏电极,其中在所述第一未掺杂的GaN层和所述第一未掺杂的AlGaN层之间的异质结界面处形成沟道。
    • 8. 发明申请
    • NITRIDE SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF
    • 氮化物半导体器件及其制造方法
    • US20090078943A1
    • 2009-03-26
    • US12233011
    • 2008-09-18
    • Hidetoshi ISHIDATetsuzo UEDADaisuke UEDA
    • Hidetoshi ISHIDATetsuzo UEDADaisuke UEDA
    • H01L29/15H01L21/00
    • H01L21/84H01L27/12H01L29/2003H01L29/78681
    • A nitride semiconductor device mainly made of a nitride semiconductor material having excellent heat dissipation characteristics and great crystallinity and a method for manufacturing thereof are provided. The method for manufacturing the nitride semiconductor includes vapor-depositing a diamond layer on a silicon substrate, bonding an SOI substrate on a surface of the diamond layer, thinning the SOI substrate, epitaxially growing an GaN layer on the thinned SOI substrate, removing the silicon substrate, and bonding, on a rear-surface of the diamond layer, a material having a thermal conductivity greater than a thermal conductivity of the silicon substrate. The SOI substrate has an outermost surface layer and a silicon oxide layer. In the thinning, the SOI substrate is thinned by selectively removed through the silicon oxide layer, so that only the outermost surface layer is left.
    • 提供了主要由具有优异散热特性和高结晶度的氮化物半导体材料制成的氮化物半导体器件及其制造方法。 制造氮化物半导体的方法包括在硅衬底上气相沉积金刚石层,将SOI衬底粘合在金刚石层的表面上,使SOI衬底变薄,在薄化SOI衬底上外延生长GaN层,除去硅 衬底和接合在金刚石层的后表面上,具有大于硅衬底的热导率的导热率的材料。 SOI衬底具有最外表面层和氧化硅层。 在薄化中,SOI衬底通过选择性地通过氧化硅层去除而变薄,使得仅留下最外表面层。
    • 9. 发明申请
    • FIELD-EFFECT TRANSISTOR
    • 场效应晶体管
    • US20110227132A1
    • 2011-09-22
    • US13118945
    • 2011-05-31
    • Yoshiharu ANDAHidetoshi ISHIDATetsuzo UEDA
    • Yoshiharu ANDAHidetoshi ISHIDATetsuzo UEDA
    • H01L29/205
    • H01L29/42316H01L29/2003H01L29/4236H01L29/7787
    • The present invention has as an object to provide a FET having low on-resistance. The FET according to the present invention includes: first nitride semiconductor layer; a second nitride semiconductor layer formed on the first nitride semiconductor layer and having a higher band gap energy than the first nitride semiconductor layer; a third nitride semiconductor layer formed on the second nitride semiconductor layer; a fourth nitride semiconductor layer formed on the third nitride semiconductor layer and having a higher band gap energy than the third nitride semiconductor layer. A channel is formed in a heterojunction interface between the first nitride semiconductor layer and the second nitride semiconductor layer.
    • 本发明的目的是提供一种具有低导通电阻的FET。 根据本发明的FET包括:第一氮化物半导体层; 形成在所述第一氮化物半导体层上并且具有比所述第一氮化物半导体层更高的带隙能量的第二氮化物半导体层; 形成在所述第二氮化物半导体层上的第三氮化物半导体层; 形成在所述第三氮化物半导体层上并且具有比所述第三氮化物半导体层更高的带隙能量的第四氮化物半导体层。 在第一氮化物半导体层和第二氮化物半导体层之间的异质结界面形成沟道。
    • 10. 发明申请
    • 4H-POLYTYPE GALLIUM NITRIDE-BASED SEMICONDUCTOR DEVICE ON A 4H-POLYTYPE SUBSTRATE
    • 4H-多晶型氮化镓基半导体器件在4H-多晶基片上
    • US20090261362A1
    • 2009-10-22
    • US12496271
    • 2009-07-01
    • Tetsuzo UEDATsunenobu KimotoHiroyuki MatsunamiJun SudaNorio Onojima
    • Tetsuzo UEDATsunenobu KimotoHiroyuki MatsunamiJun SudaNorio Onojima
    • H01L33/00
    • H01L21/02082H01L21/02378H01L21/02433H01L21/02458H01L21/0254H01L21/0262H01L21/02639H01L21/0265H01L33/18H01L33/32
    • 4H—InGaAlN alloy based optoelectronic and electronic devices on non-polar face are formed on 4H—AlN or 4H—AlGaN on (11-20) a-face 4H—SiC substrates. Typically, non polar 4H—AlN is grown on 4H—SiC (11-20) by molecular beam epitaxy (MBE). Subsequently, III-V nitride device layers are grown by metal organic chemical vapor deposition (MOCVD) with 4H-polytype for all of the layers. The non-polar device does not contain any built-in electric field due to the spontaneous and piezoelectric polarization. The optoelectronic devices on the non-polar face exhibits higher emission efficiency with shorter emission wavelength because the electrons and holes are not spatially separated in the quantum well. Vertical device configuration for lasers and light emitting diodes (LEDs) using conductive 4H—AlGaN interlayer on conductive 4H—SiC substrates makes the chip size and series resistance smaller. The elimination of such electric field also improves the performance of high speed and high power transistors. The details of the epitaxial growth s and the processing procedures for the non-polar III-V nitride devices on the non-polar SiC substrates are also disclosed.
    • 在(11-20)a面4H-SiC衬底上的4H-AlN或4H-AlGaN上形成4H-InGaAlN合金基非极性面上的光电子和电子器件。 通常,非极性4H-AlN通过分子束外延(MBE)在4H-SiC(11-20)上生长。 随后,通过用于所有层的4H-多型金属有机化学气相沉积(MOCVD)生长III-V族氮化物器件层。 由于自发和压电极化,非极性器件不包含任何内置的电场。 由于电子和空穴在量子阱中没有空间分离,非极性面上的光电器件表现出较短的发射波长的发射效率。 在导电4H-SiC衬底上使用导电4H-AlGaN夹层的激光器和发光二极管(LED)的垂直器件配置使芯片尺寸和串联电阻更小。 这种电场的消除也提高了高速和高功率晶体管的性能。 还公开了非极性SiC衬底上的非极性III-V族氮化物器件的外延生长细节和处理步骤。