会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for position dependent change in the magnetization in an object in a magnetic resonance experiment
    • 磁共振实验中物体磁化位置相关变化的方法
    • US08508227B2
    • 2013-08-13
    • US12897806
    • 2010-10-05
    • Martin HaasPeter UllmannWolfgang RuhmMaxim ZaitsevJürgen Hennig
    • Martin HaasPeter UllmannWolfgang RuhmMaxim ZaitsevJürgen Hennig
    • G01V3/00
    • G01R33/4836G01R33/3415G01R33/385G01R33/4833G01R33/5612
    • A method for position dependent change in the magnetization in an object, according to a requirement in a magnetic resonance measurement, wherein radio-frequency pulses are irradiated in conjunction with supplementary magnetic fields that vary in space and over time and are superposed on the static and homogeneous basic field of a magnetic resonance measurement apparatus along a z-direction, is characterized in that non-linear supplementary magnetic fields are used, whose spatial gradient of the z-component is not constant at least at one instant of the irradiation, and that the radio-frequency pulses to be irradiated are calculated in advance, wherein progressions over time of the field strengths of the supplementary magnetic fields in the region of the object that are calculated and/or measured position-dependently are included in this calculation. This enables change in the magnetization with an at least locally spatially higher resolution and/or shorter irradiation duration of the RF pulses and supplementary magnetic fields than is feasible with linear supplementary magnetic fields produced by conventional gradient systems. In particular, this is possible under the technical and physiological conditions that currently constrain the performance of the known methods using linear supplementary fields.
    • 根据磁共振测量中的要求,对物体的磁化位置相关变化的方法,其中射频脉冲与空间和时间上变化并叠加在静态和 磁共振测量装置沿z方向的均匀基本场的特征在于,使用非线性辅助磁​​场,其至少在照射一瞬间z分量的空间梯度不恒定,并且 预先计算要照射的射频脉冲,其中在该计算中包括在计算和/或测量的对象的区域中的辅助磁场的场强随时间的逐渐增加。 这使得能够利用由常规梯度系统产生的线性补充磁场可行的RF脉冲和辅助磁场的至少局部空间上更高的分辨率和/或更短的照射持续时间来改变磁化。 特别地,这在目前限制使用线性补充领域的已知方法的性能的技术和生理条件下是可能的。
    • 2. 发明申请
    • Method for position dependent change in the magnetization in an object in a magnetic resonance experiment
    • 磁共振实验中物体磁化位置相关变化的方法
    • US20110080169A1
    • 2011-04-07
    • US12897806
    • 2010-10-05
    • Martin HaasPeter UllmannWolfgang RuhmMaxim ZaitsevJürgen Hennig
    • Martin HaasPeter UllmannWolfgang RuhmMaxim ZaitsevJürgen Hennig
    • G01R33/48
    • G01R33/4836G01R33/3415G01R33/385G01R33/4833G01R33/5612
    • A method for position dependent change in the magnetization in an object, according to a requirement in a magnetic resonance measurement, wherein radio-frequency pulses are irradiated in conjunction with supplementary magnetic fields that vary in space and over time and are superposed on the static and homogeneous basic field of a magnetic resonance measurement apparatus along a z-direction, is characterized in that non-linear supplementary magnetic fields are used, whose spatial gradient of the z-component is not constant at least at one instant of the irradiation, and that the radio-frequency pulses to be irradiated are calculated in advance, wherein progressions over time of the field strengths of the supplementary magnetic fields in the region of the object that are calculated and/or measured position-dependently are included in this calculation. This enables change in the magnetization with an at least locally spatially higher resolution and/or shorter irradiation duration of the RF pulses and supplementary magnetic fields than is feasible with linear supplementary magnetic fields produced by conventional gradient systems. In particular, this is possible under the technical and physiological conditions that currently constrain the performance of the known methods using linear supplementary fields.
    • 根据磁共振测量中的要求,对物体的磁化位置相关变化的方法,其中射频脉冲与空间和时间上变化并叠加在静态和 磁共振测量装置沿z方向的均匀基本场的特征在于,使用非线性辅助磁​​场,其至少在照射一瞬间z分量的空间梯度不恒定,并且 预先计算要照射的射频脉冲,其中在该计算中包括在计算和/或测量的对象的区域中的辅助磁场的场强随时间的逐渐增加。 这使得能够利用由常规梯度系统产生的线性补充磁场可行的RF脉冲和辅助磁场的至少局部空间上更高的分辨率和/或更短的照射持续时间来改变磁化。 特别地,这在目前限制使用线性补充领域的已知方法的性能的技术和生理条件下是可能的。
    • 3. 发明授权
    • Magnetic resonance selective excitation method of a target distribution of magnetization with complete full integration of bloch equations for RF large angle pulses (LAP)'s that are 15 degrees or greater, without small angle approximation
    • 磁共振选择激励方法的目标磁化分布方法,对于大于15度或更大的RF大角度脉冲(LAP)的完全整体积分,无小角度逼近
    • US08368400B2
    • 2013-02-05
    • US12382202
    • 2009-03-11
    • Martin HaasMaxim ZaitsevJürgen Hennig
    • Martin HaasMaxim ZaitsevJürgen Hennig
    • G01V3/00
    • G01R33/483G01R33/4833G01R33/4836G01R33/543G01R33/5611G01R33/5612G01R33/5613G01R33/5617
    • A magnetic resonance method for using radio frequency pulses for spatially selective and frequency selective or multidimensionally spatially selective excitation of an ensemble of nuclear spins with an initial distribution of magnetization in a main magnetic field aligned along a z-axis, wherein a spin magnetization with a given target distribution of magnetization is generated, and for refocusing the spin magnetization, is characterized in that the radio frequency pulse is used as a sequence of sub-pulses of independent duration, courses of gradients and spatial and/or spectral resolution, comprising one or more large angle RF pulses with tip angles greater than or approximately equal to 15°, which generate a gross distribution of magnetization approximating the target distribution of magnetization or a desired modification of the distribution of magnetization with a mean deviation less than or approximately equal to 15°, wherein the actual effect of the LAPs on the distribution of spin magnetization before the radio frequency pulse is used is calculated by integration of the Bloch equations without small angle approximation, and one or more small angle RF pulses=SAPs with tip angles less than or approximately equal to 15° reducing the difference between the target distribution of magnetization and the gross distribution of magnetization caused by the LAPs.
    • 一种磁共振方法,用于使用射频脉冲用于沿着z轴对准的主磁场中的初始磁化分布的核自旋组合的空间选择性或频率选择性或多维空间选择性激发,其中自旋磁化与 产生磁化的目标分布,并且对于重新聚焦自旋磁化,其特征在于射频脉冲被用作独立持续时间,梯度,空间和/或光谱分辨率的子脉冲序列,包括一个或 具有大于或大约等于15°的尖角的更大的角度RF脉冲,其产生近似磁化的目标分布的磁化的总体分布或磁化分布的期望修改,平均偏差小于或等于15 °,其中LAP对分布的实际效果 使用无线电频率脉冲之前的自旋磁化是通过不使用小角度近似的Bloch方程的积分计算的,并且一个或多个小角度RF脉冲=具有小于或等于15°的尖角的SAP减少目标分布之间的差异 的磁化和由LAP引起的磁化的总分布。
    • 4. 发明申请
    • Method of dynamically compensating for magnetic field heterogeneity in magnetic resonance imaging
    • 动态补偿磁共振成像磁场异质性的方法
    • US20120249137A1
    • 2012-10-04
    • US13414737
    • 2012-03-08
    • Walter WitscheyMaxim ZaitsevJürgen HennigGerrit SchultzDaniel Gallichan
    • Walter WitscheyMaxim ZaitsevJürgen HennigGerrit SchultzDaniel Gallichan
    • G01R33/58
    • G01R33/3875
    • A method to compensate for the magnetic field heterogeneity inside an object of investigation in a MR device obtains an uncorrected magnetic field distribution of the object and executes an MR sequence with a desired k-space coverage by applying RF pulses to generate a transverse magnetization within the object. MR signal data is recorded, magnetic field shimming parameters are dynamically updated and MR signal data are reconstructed to produce images or localized spectroscopic data. Artifacts in a reconstructed image resulting from an uncorrected magnetic field distribution are suppressed by temporally separating MR signals originating from at least two different sub-volumes within a volume of transverse magnetization by generating a nonlinear phase distribution within the object and by dynamically updating shimming parameters to compensate for the field inhomogeneity distributions within the different sub-volumes in the volume of transverse magnetization.
    • 用于补偿MR装置内的调查对象内的磁场异质性的方法获得对象的未校正的磁场分布,并通过施加RF脉冲来产生具有期望的k空间覆盖的MR序列,以在其内产生横向磁化 目的。 记录MR信号数据,动态地更新磁场匀场参数,重建MR信号数据以产生图像或局部光谱数据。 通过在对象内生成非线性相位分布,并且通过动态地更新匀场参数来暂时分离来自横向磁化体积内的至少两个不同子体积的MR信号,从而抑制由未校正的磁场分布产生的重构图像中的人造物 补偿横向磁化量的不同子体积内的场不均匀性分布。
    • 6. 发明授权
    • Method of dynamically compensating for magnetic field heterogeneity in magnetic resonance imaging
    • 动态补偿磁共振成像磁场异质性的方法
    • US09377517B2
    • 2016-06-28
    • US13414737
    • 2012-03-08
    • Walter WitscheyMaxim ZaitsevJürgen HennigGerrit SchultzDaniel Gallichan
    • Walter WitscheyMaxim ZaitsevJürgen HennigGerrit SchultzDaniel Gallichan
    • G01R33/58G01R33/3875
    • G01R33/3875
    • A method to compensate for the magnetic field heterogeneity inside an object of investigation in a MR device obtains an uncorrected magnetic field distribution of the object and executes an MR sequence with a desired k-space coverage by applying RF pulses to generate a transverse magnetization within the object. MR signal data is recorded, magnetic field shimming parameters are dynamically updated and MR signal data are reconstructed to produce images or localized spectroscopic data. Artifacts in a reconstructed image resulting from an uncorrected magnetic field distribution are suppressed by temporally separating MR signals originating from at least two different sub-volumes within a volume of transverse magnetization by generating a nonlinear phase distribution within the object and by dynamically updating shimming parameters to compensate for the field inhomogeneity distributions within the different sub-volumes in the volume of transverse magnetization.
    • 用于补偿MR装置内的调查对象内的磁场异质性的方法获得对象的未校正的磁场分布,并通过施加RF脉冲来产生具有期望的k空间覆盖的MR序列,以在其内产生横向磁化 目的。 记录MR信号数据,动态地更新磁场匀场参数,重建MR信号数据以产生图像或局部光谱数据。 通过在对象内生成非线性相位分布,并且通过动态地更新匀场参数来暂时分离来自横向磁化体积内的至少两个不同子体积的MR信号,从而抑制由未校正的磁场分布产生的重构图像中的人造物 补偿横向磁化量的不同子体积内的场不均匀性分布。
    • 7. 发明授权
    • Method for the production of nuclear magnetic spectroscopy signals through spatial modulation of z-magnetization
    • 通过z-磁化的空间调制生产核磁光谱信号的方法
    • US06246238B1
    • 2001-06-12
    • US09186422
    • 1998-11-05
    • Jürgen Hennig
    • Jürgen Hennig
    • G01V300
    • G01R33/563G01R33/4608
    • A method for magnetic resonance imaging (NMR) subjects a sample of magnetic spins, having differing Larmor frequencies and located in an external magnetic field, to a sequence of at least two radio frequency pulse sequences in time separation tm with respect to each other, wherein the difference in Larmor frequencies is due to the type of nuclei, to the inhomogeneities of the magnetic field utilized, or through action of an additional magnetic field gradient and wherein the first radio frequency pulse sequence effects excitation of, relative to the distribution of Larmor frequencies, periodic modulation of the z-magnetization having a modulation separation 2&Dgr;&ohgr; and the second radio frequency pulse sequence transfers this periodic modulating z-magnetization into transverse magnetization leading to signal production. The method is characterized in that at least one of the radio frequency pulse sequences utilized has a periodic rectangular excitation shape having a modulation separation 2&Dgr;&ohgr; so that, following a certain time determined by the modulation separation 2&Dgr;&ohgr;, at least a partial coherence of transverse magnetization results and thereby a measurable NMR signal. In this manner, an improved stimulated echo signal can be created.
    • 用于磁共振成像(NMR)的方法将具有不同拉莫尔频率并位于外部磁场中的磁自旋样本相对于彼此在时间分离tm中的至少两个射频脉冲序列的序列进行对比,其中 拉莫尔频率的差异是由于核的类型,所使用的磁场的不均匀性或通过额外的磁场梯度的作用,并且其中第一射频脉冲序列相对于拉莫尔频率的分布实现激励 具有调制分离2DELTAomega的z-磁化的周期性调制,而第二射频脉冲序列将该周期性调制z-磁化转移成横向磁化,导致信号产生。 该方法的特征在于,使用的射频脉冲序列中的至少一个具有调制分离2DELTAomega的周期性矩形激励形状,使得在由调制分离2DELTAomega确定的一定时间之后,横向磁化结果的至少部分相干性 从而得到可测量的NMR信号。 以这种方式,可以产生改善的受激回波信号。
    • 8. 发明授权
    • Apparatus and method for NMR tomography acquisition with local magnetic field gradients in connection with local receiver coils
    • 用局部磁场梯度结合局部接收线圈的NMR层析成像采集装置和方法
    • US07411395B2
    • 2008-08-12
    • US11584857
    • 2006-10-23
    • Jürgen Hennig
    • Jürgen Hennig
    • G01V3/00
    • G01R33/5611G01R33/385G01R33/56518
    • A magnetic resonance tomography apparatus, includes a gradient system that can generate at least one spatially varying and optionally time-varying magnetic field for at least one-dimensional local encoding of measuring signals in an area of a test sample to be imaged. The gradient system contains at least one subsystem which can generate a non-bijective spatially varying magnetic (NBSEM) field for local encoding, such that the function of the field strength of such an NBSEM within the area to be imaged has at least one local extreme value (maximum or minimum), such that the area to be imaged is divided along the hyper surface formed by the entirety of all local extreme values of the at least one NBSEM. The apparatus can produce images of the same quality with smaller magnetic field differences and permits easy realization.
    • 磁共振断层摄影装置包括梯度系统,该梯度系统可以产生至少一个空间变化和任选的时变磁场,用于待成像的测试样品的区域中的测量信号的至少一维局部编码。 梯度系统包含至少一个可以产生用于局部编码的非双射空间变化磁(NBSEM)场的子系统,使得这样的NBSEM在待成像区域内的场强的函数具有至少一个局部极值 值(最大值或最小值),使得要成像的区域沿着由至少一个NBSEM的所有局部极值的整体形成的超表面分割。 该装置可以产生具有较小磁场差异的相同质量的图像,并且允许容易实现。
    • 9. 发明授权
    • Method for measuring the magnetic resonance (NMR) by steady state signals (SSFP)
    • 通过稳态信号(SSFP)测量磁共振(NMR)的方法
    • US06677750B2
    • 2004-01-13
    • US10211420
    • 2002-08-02
    • Jürgen HennigKlaus SchefflerOliver Speck
    • Jürgen HennigKlaus SchefflerOliver Speck
    • G01V300
    • G01R33/485G01R33/5613
    • A method of magnetic resonance (NMR) for spatially resolved measurement of the distribution of NMR signals of metabolites (CSI) with low signal intensity, wherein on a spin ensemble, a sequence of radio frequency (RF) pulses is applied which are mutually offset by a time interval of a repetition time TR and magnetic gradient fields are switched of which at least one causes spatial encoding of the excited spins, is characterized in that the repetition time TR between the exciting RF pulses is selected to be at the most in the magnitude transverse relaxation time T2* of the spins to be excited, preferably approximately T2*/10 and that the magnetic gradient fields are selected such that their action integral is completely balanced over a repetition period of a time period TR such that NMR signal production is carried out according to the principle of steady state free precession (SSFP). This new method permits utilization of the advantages of SSFP methods also for spectroscopic recordings, in particular for chemical shift imaging.
    • 一种用于空间分辨测量具有低信号强度的代谢物(CSI)的NMR信号分布的磁共振(NMR)的方法,其中在自旋集合上施加射频(RF)脉冲序列,其相互抵消 重复时间TR的时间间隔和至少一个导致所激发的自旋的空间编码的磁梯度场的切换的特征在于,激励RF脉冲之间的重复时间TR被选择为最大的幅度 要激发的自旋的横向松弛时间T2 *,优选大约为T2 * / 10,并且选择磁梯度场,使得它们的作用积分在时间段TR的重复周期上完全平衡,使得NMR信号产生被携带 根据稳态自由进动(SSFP)的原理出发。 这种新方法允许利用SSFP方法的优点也用于光谱记录,特别是用于化学位移成像。