会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Nuclear Magnetic Resonance Logging Tool Having an Array of Antennas
    • 具有天线阵列的核磁共振测井工具
    • US20130093422A1
    • 2013-04-18
    • US13519647
    • 2010-06-16
    • Marian L. MorysKnizhnik SergeiRebecca C. JachmannRobert Epstein
    • Marian L. MorysKnizhnik SergeiRebecca C. JachmannRobert Epstein
    • G01V3/32
    • G01V3/32H01Q1/04H01Q7/00H01Q21/24
    • Various disclosed nuclear magnetic resonance (NMR) logging systems and methods employ an array of antennas to provide increased resolution without sacrificing signal-to-noise ratio. Certain method embodiments include: establishing a static magnetic field (B0) with a tool moving along a borehole through a formation; concurrently driving a multiple antenna cells to produce a radio frequency field (B1) in said formation; measuring an individual response from each antenna cell as nuclear spins undergo precession in the formation; and determining at least one characteristic relaxation time of the formation based at least in part on the individual response. The individual responses can be associated with positions where the individual responses were measured, and the relaxation time can be determined from a combination of those responses associated with a given position. Certain responses may be excluded due to tool motion that degrades the measured response.
    • 各种公开的核磁共振(NMR)测井系统和方法采用天线阵列来提供增加的分辨率而不牺牲信噪比。 某些方法实施例包括:建立具有工具沿井眼移动通过地层的工具的静态磁场(B0); 同时驱动多个天线单元以在所述地层中产生射频场(B1); 测量来自每个天线单元的个体响应,因为核自旋在地层中进行进动; 以及至少部分地基于所述个体响应来确定所述地层的至少一个特征弛豫时间。 个体反应可以与测量个体反应的位置相关联,并且可以从与给定位置相关联的那些反应的组合来确定弛豫时间。 可能由于工具运动而排除某些响应,这会降低测量的响应。
    • 2. 发明授权
    • Nuclear magnetic resonance logging tool having an array of antennas
    • 具有天线阵列的核磁共振测井工具
    • US09201159B2
    • 2015-12-01
    • US13519647
    • 2010-06-16
    • Marian L. MorysKnizhnik SergeiRebecca C. JachmannRobert Epstein
    • Marian L. MorysKnizhnik SergeiRebecca C. JachmannRobert Epstein
    • G01V3/00G01V3/32H01Q1/04H01Q7/00H01Q21/24
    • G01V3/32H01Q1/04H01Q7/00H01Q21/24
    • Various disclosed nuclear magnetic resonance (NMR) logging systems and methods employ an array of antennas to provide increased resolution without sacrificing signal-to-noise ratio. Certain method embodiments include: establishing a static magnetic field (B0) with a tool moving along a borehole through a formation; concurrently driving a multiple antenna cells to produce a radio frequency field (B1) in said formation; measuring an individual response from each antenna cell as nuclear spins undergo precession in the formation; and determining at least one characteristic relaxation time of the formation based at least in part on the individual response. The individual responses can be associated with positions where the individual responses were measured, and the relaxation time can be determined from a combination of those responses associated with a given position. Certain responses may be excluded due to tool motion that degrades the measured response.
    • 各种公开的核磁共振(NMR)测井系统和方法采用天线阵列来提供增加的分辨率而不牺牲信噪比。 某些方法实施例包括:建立具有工具沿井眼移动通过地层的工具的静态磁场(B0); 同时驱动多个天线单元以在所述地层中产生射频场(B1); 测量来自每个天线单元的个体响应,因为核自旋在地层中进行进动; 以及至少部分地基于所述个体响应来确定所述地层的至少一个特征弛豫时间。 个体反应可以与测量个体反应的位置相关联,并且可以从与给定位置相关联的那些反应的组合来确定弛豫时间。 可能由于工具运动而排除某些响应,这会降低测量的响应。
    • 3. 发明申请
    • Interferometry-Based Downhole Analysis Tool
    • 基于干涉测井的井下分析工具
    • US20120250017A1
    • 2012-10-04
    • US13147478
    • 2009-12-23
    • Marian L. MorysSteve ZannoniChristopher M. Jones
    • Marian L. MorysSteve ZannoniChristopher M. Jones
    • G01B9/02G01N21/84
    • G01N21/31E21B49/088G01J3/021G01J3/4532G01J3/4535G01J2003/4534G01N21/33G01N21/35G01N21/3577G01N2021/3595
    • Various systems and methods for performing optical analysis downhole with an interferogram (a light beam having frequency components with a time variation that identifies those frequency components. The interferogram is produced by introducing an interferometer into the light path, with the two arms of the interferometer having a propagation time difference that varies as a function of time. Before or after the interferometer, the light encounters a material to be analyzed, such as a fluid sample from the formation, a borehole fluid sample, a core sample, or a portion of the borehole wall. The spectral characteristics of the material are imprinted on the light beam and can be readily analyzed by processing electronics that perform a Fourier Transform to obtain the spectrum or that enable a comparison with one or more templates. An interferometer designed to perform well in the hostile environments downhole is expected to enable laboratory-quality measurements.
    • 用干涉图进行井下光学分析的各种系统和方法(具有识别那些频率分量的具有时间变化的频率分量的光束)通过将干涉仪引入光路而产生干涉图,干涉仪的两个臂具有 传播时间差随时间而变化在干涉仪之前或之后,光线遇到要分析的材料,例如来自地层的流体样品,井眼流体样品,核心样品或一部分 材料的光谱特性被印在光束上,并且可以通过进行傅里叶变换的处理电子装置容易地进行分析,以获得光谱或使得能够与一个或多个模板进行比较。 预计井下敌对环境将能够实现实验室质量测量。
    • 5. 发明授权
    • Downhole optical radiometry tool
    • 井下光学辐射测量工具
    • US09091151B2
    • 2015-07-28
    • US13502805
    • 2010-11-18
    • Christopher M. JonesStephen A. ZannoniMichael T. PelletierRaj PaiWei ZhangMarian L. MorysRobert Atkinson
    • Christopher M. JonesStephen A. ZannoniMichael T. PelletierRaj PaiWei ZhangMarian L. MorysRobert Atkinson
    • G01V5/08E21B47/10E21B49/10
    • E21B47/102E21B49/10
    • Various methods and tools optically analyze downhole fluid properties in situ. Some disclosed downhole optical radiometry tools include a tool body having a sample cell for fluid flow. A light beam passes through the sample cell and a spectral operation unit (SOU) such as a prism, filter, interferometer, or multivariate optical element (MOE). The resulting light provides a signal indicative of one or more properties of the fluid. A sensor configuration using electrically balanced thermopiles offers a high sensitivity over a wide temperature range. Further sensitivity is achieved by modulating the light beam and/or by providing a reference light beam that does not interact with the fluid flow. To provide a wide spectral range, some embodiments include multiple filaments in the light source, each filament having a different emission spectrum. Moreover, some embodiments include a second light source, sample cell, SOU, and detector to provide increased range, flexibility, and reliability.
    • 各种方法和工具可以原位分析井下流体性质。 一些公开的井下光学辐射测量工具包括具有用于流体流动的样品池的工具主体。 光束通过样品池和诸如棱镜,滤光器,干涉仪或多元光学元件(MOE)的光谱操作单元(SOU)。 所得到的光提供指示流体的一个或多个特性的信号。 使用电平衡热电堆的传感器配置在宽温度范围内提供高灵敏度。 通过调制光束和/或通过提供不与流体流相互作用的参考光束来实现进一步的灵敏度。 为了提供宽的光谱范围,一些实施例包括光源中的多个细丝,每个细丝具有不同的发射光谱。 此外,一些实施例包括第二光源,样品池,SOU和检测器,以提供更大的范围,灵活性和可靠性。
    • 7. 发明申请
    • SPECTROSCOPIC NANOSENSOR LOGGING SYSTEMS AND METHODS
    • 光谱纳米传感器记录系统和方法
    • US20130068940A1
    • 2013-03-21
    • US13636294
    • 2011-06-01
    • Christopher M. JonesMichael T. PelletierJing ShenMarian L. Morys
    • Christopher M. JonesMichael T. PelletierJing ShenMarian L. Morys
    • E21B47/10
    • E21B47/102B82Y30/00E21B49/00G01N21/658G01V5/00
    • Logging systems and methods that employ nanosensors to obtain spectral measurements downhole. The nanosensors can be dispersed in borehole fluids (including cement slurries) that circulate, diffuse, or get injected in a borehole. Because the nanosensors have diameters on the order of 10 nm to 1000 nm, they readily penetrate into cracks, pores, and other voids where their carrier fluids can reach. The nanosensors transport light sources and recording media to measure spectra in these otherwise inaccessible regions. The nanosensors are then recovered and analyzed to reconstruct the measured spectra and determine relevant material characteristics. Among other things, spectral measurements can reveal the presence of certain elements and molecules in the formation and fluids, from which information scientists determine composition and phases of formation fluids and the formation itself. Certain triggering criteria may also be employed to enable the nanosensor measurements to be associated with specific locations, paths, and/or events.
    • 使用纳米传感器在井下获取光谱测量的测井系统和方法。 纳米传感器可以分散在钻孔中的循环,扩散或注入的井眼流体​​(包括水泥浆)中。 因为纳米传感器的直径在10nm到1000nm之间,所以它们很容易渗透到其载体流体可以达到的裂纹,孔隙和其它空隙中。 纳米传感器传输光源和记录介质以测量这些其他不可接近区域的光谱。 然后回收和分析纳米传感器以重建测量的光谱并确定相关的材料特性。 除了别的以外,光谱测量可以揭示地层和流体中某些元素和分子的存在,信息科学家从这些元素和分子中可以确定地层流体的组成和阶段以及地层本身。 还可以采用某些触发标准,以使纳米传感器测量与特定位置,路径和/或事件相关联。
    • 9. 发明授权
    • Spectroscopic nanosensor logging systems and methods
    • 光谱纳米传感器测井系统及方法
    • US08921768B2
    • 2014-12-30
    • US13636294
    • 2011-06-01
    • Christopher M. JonesMichael T. PelletierJing ShenMarian L. Morys
    • Christopher M. JonesMichael T. PelletierJing ShenMarian L. Morys
    • G01V5/00G01V5/04E21B47/10B82Y30/00G01N21/65E21B49/00
    • E21B47/102B82Y30/00E21B49/00G01N21/658G01V5/00
    • Logging systems and methods that employ nanosensors to obtain spectral measurements downhole. The nanosensors can be dispersed in borehole fluids (including cement slurries) that circulate, diffuse, or get injected in a borehole. Because the nanosensors have diameters on the order of 10 nm to 1000 nm, they readily penetrate into cracks, pores, and other voids where their carrier fluids can reach. The nanosensors transport light sources and recording media to measure spectra in these otherwise inaccessible regions. The nanosensors are then recovered and analyzed to reconstruct the measured spectra and determine relevant material characteristics. Among other things, spectral measurements can reveal the presence of certain elements and molecules in the formation and fluids, from which information scientists determine composition and phases of formation fluids and the formation itself. Certain triggering criteria may also be employed to enable the nanosensor measurements to be associated with specific locations, paths, and/or events.
    • 使用纳米传感器在井下获取光谱测量的测井系统和方法。 纳米传感器可以分散在钻孔中的循环,扩散或注入的井眼流体​​(包括水泥浆)中。 因为纳米传感器的直径在10nm到1000nm之间,所以它们很容易渗透到其载体流体可以达到的裂纹,孔隙和其它空隙中。 纳米传感器传输光源和记录介质以测量这些其他不可接近区域的光谱。 然后回收和分析纳米传感器以重建测量的光谱并确定相关的材料特性。 除了别的以外,光谱测量可以揭示地层和流体中某些元素和分子的存在,信息科学家可以从这些元素和分子确定地层流体的组成和阶段以及地层本身。 还可以采用某些触发标准,以使纳米传感器测量与特定位置,路径和/或事件相关联。