会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • METHOD AND SYSTEM FOR THE HIGH-PRECISION POSITIONING OF AT LEAST ONE OBJECT IN A FINAL LOCATION IN SPACE
    • 用于空间中最终位置的至少一个对象的高精度定位的方法和系统
    • US20100274390A1
    • 2010-10-28
    • US12810797
    • 2008-12-17
    • Bernd WalserBernhard MetzlerBeat AebischerKnut SiercksBo Pettersson
    • Bernd WalserBernhard MetzlerBeat AebischerKnut SiercksBo Pettersson
    • B25J9/16B25J19/04
    • B25J9/1697
    • The invention relates to a method and a system for the high-precision positioning of at least one object in a final location in space. An object (12) is gripped and held by the industrial robot (11) within a gripping tolerance. A compensating variable, which corrects the gripping tolerance, is determined for the industrial robot (11). The object (12) is adjusted with high precision into a final location by the following steps, which repeat until reaching the final location at a predetermined tolerance: recording of image recordings by recording units (1a, 1b); determining the current location of the object (12) in the spatial coordinate system from the positions (Pa, Pb) of the recording units (1a, 1b), the angular orientations of cameras (2a, 2b) of the recording units (1a, 1b) which are detected by angle measuring units (4a, 4b), the image recordings, and the knowledge of features (13) on the object (12); calculating the location difference between the current location of the object (12) and the final location; calculating a new target position of the industrial robot (11) in consideration of the compensating variable from the current position of the industrial robot (11) and a variable which is linked to the location difference; adjusting the industrial robot (11) into the new target position.
    • 本发明涉及一种用于在空间中的最终位置中对至少一个物体进行高精度定位的方法和系统。 物体(12)由工业机器人(11)夹持并保持在夹紧公差内。 为工业机器人(11)确定校正夹紧公差的补偿变量。 通过以下步骤将物体(12)以高精度调节到最终位置,其重复直到以预定公差到达最终位置:通过记录单元(1a,1b)记录图像记录; 从记录单元(1a,1b)的位置(Pa,Pb)确定物体(12)在空间坐标系中的当前位置,记录单元(1a,1b)的相机(2a,2b) 1b),通过角度测量单元(4a,4b),图像记录和物体(12)上的特征(13)的知识来检测; 计算对象(12)的当前位置与最终位置之间的位置差; 考虑到来自工业机器人(11)的当前位置的补偿变量和与位置差异相关联的变量来计算工业机器人(11)的新目标位置; 将工业机器人(11)调整到新的目标位置。
    • 4. 发明申请
    • METHOD FOR DETERMINING AN INFLUENCING VARIABLE ACTING ON THE ECCENTRICITY IN A GONIOMETER
    • 确定影响差异偏差的变量的方法
    • US20100039656A1
    • 2010-02-18
    • US12522198
    • 2007-12-06
    • Heinz LippunerKnut SiercksBeat Aebischer
    • Heinz LippunerKnut SiercksBeat Aebischer
    • G01D5/347
    • G01D5/34707G01D5/24452G01D5/24466G01D5/2449G01D5/3473
    • The invention relates to a method for determining at least one influencing variable acting on the eccentricity in a goniometer, using a detector arrangement consisting of four optical detector elements, and a rotational body comprising a plurality of pattern elements arranged around a pattern center, the rotational body being rotatably arranged about an axis. According to said method, at least some of the pattern elements are reproduced on the detector arrangement, the positions of the pattern elements reproduced on the detector arrangement are resolved, and the eccentricity of the pattern center in relation to a detector center of the detector arrangement is determined. A plurality of such eccentricity measurements for different rotational positions enables different influencing variables acting on the current eccentricity to be separated, especially by forming units.
    • 本发明涉及一种用于使用由四个光学检测器元件组成的检测器装置来确定作用于测角器中的偏心的至少一个影响变量的方法,以及包括围绕图案中心布置的多个图案元件的旋转体, 主体围绕轴线可旋转地布置。 根据所述方法,在检测器装置上再现至少一些图形元素,解析在检测器装置上再现的图案元素的位置,并且图案中心相对于检测器装置的检测器中心的偏心度 决心,决意,决定。 用于不同旋转位置的多个这种偏心测量使得能够分离作用于当前偏心的不同影响变量,特别是通过形成单元。
    • 6. 发明授权
    • Method and system for the high-precision positioning of at least one object in a final location in space
    • 用于在空间中的最终位置中至少一个对象的高精度定位的方法和系统
    • US08346392B2
    • 2013-01-01
    • US12810797
    • 2008-12-17
    • Bernd WalserBernhard MetzlerBeat AebischerKnut SiercksBo Pettersson
    • Bernd WalserBernhard MetzlerBeat AebischerKnut SiercksBo Pettersson
    • G05B19/00
    • B25J9/1697
    • The invention relates to a method and a system for the high-precision positioning of at least one object in a final location in space. An object (12) is gripped and held by the industrial robot (11) within a gripping tolerance. A compensating variable, which corrects the gripping tolerance, is determined for the industrial robot (11). The object (12) is adjusted with high precision into a final location by the following steps, which repeat until reaching the final location at a predetermined tolerance: recording of image recordings by recording units (1a, 1b); determining the current location of the object (12) in the spatial coordinate system from the positions (Pa, Pb) of the recording units (1a, 1b), the angular orientations of cameras (2a, 2b) of the recording units (1a, 1b) which are detected by angle measuring units (4a, 4b), the image recordings, and the knowledge of features (13) on the object (12); calculating the location difference between the current location of the object (12) and the final location; calculating a new target position of the industrial robot (11) in consideration of the compensating variable from the current position of the industrial robot (11) and a variable which is linked to the location difference; adjusting the industrial robot (11) into the new target position.
    • 本发明涉及一种用于在空间中的最终位置中对至少一个物体进行高精度定位的方法和系统。 物体(12)由工业机器人(11)夹持并保持在夹紧公差内。 为工业机器人(11)确定校正夹紧公差的补偿变量。 通过以下步骤将物体(12)以高精度调节到最终位置,其重复直到以预定公差到达最终位置:通过记录单元(1a,1b)记录图像记录; 从记录单元(1a,1b)的位置(Pa,Pb)确定物体(12)在空间坐标系中的当前位置,记录单元(1a,1b)的相机(2a,2b) 1b),通过角度测量单元(4a,4b),图像记录和物体(12)上的特征(13)的知识来检测; 计算对象(12)的当前位置与最终位置之间的位置差; 考虑到来自工业机器人(11)的当前位置的补偿变量和与位置差异相关联的变量来计算工业机器人(11)的新目标位置; 将工业机器人(11)调整到新的目标位置。
    • 8. 发明授权
    • Method for determining an influencing variable acting on the eccentricity in a goniometer
    • 确定作用在测角器偏心度的影响变量的方法
    • US08031334B2
    • 2011-10-04
    • US12522198
    • 2007-12-06
    • Heinz LippunerKnut SiercksBeat Aebischer
    • Heinz LippunerKnut SiercksBeat Aebischer
    • G01B11/26
    • G01D5/34707G01D5/24452G01D5/24466G01D5/2449G01D5/3473
    • The invention relates to a method for determining at least one influencing variable acting on the eccentricity in a goniometer, using a detector arrangement consisting of four optical detector elements, and a rotational body comprising a plurality of pattern elements arranged around a pattern center, the rotational body being rotatably arranged about an axis. According to said method, at least some of the pattern elements are reproduced on the detector arrangement, the positions of the pattern elements reproduced on the detector arrangement are resolved, and the eccentricity of the pattern center in relation to a detector center of the detector arrangement is determined. A plurality of such eccentricity measurements for different rotational positions enables different influencing variables acting on the current eccentricity to be separated, especially by forming units.
    • 本发明涉及一种用于使用由四个光学检测器元件组成的检测器装置来确定作用于测角器中的偏心的至少一个影响变量的方法,以及包括围绕图案中心布置的多个图案元件的旋转体, 主体围绕轴线可旋转地布置。 根据所述方法,在检测器装置上再现至少一些图形元素,解析在检测器装置上再现的图案元素的位置,并且图案中心相对于检测器装置的检测器中心的偏心度 决心,决意,决定。 用于不同旋转位置的多个这种偏心测量使得能够分离作用于当前偏心的不同影响变量,特别是通过形成单元。
    • 9. 发明授权
    • Method and measuring device for gauging surfaces
    • 测量表面的方法和测量装置
    • US09127929B2
    • 2015-09-08
    • US12675191
    • 2008-08-22
    • Knut SiercksThomas JensenKlaus Schneider
    • Knut SiercksThomas JensenKlaus Schneider
    • G01B11/02G01B11/00
    • G01B11/005
    • In a method for gauging surfaces (7″), in which a frequency-modulated laser beam is generated, the laser beam is emitted onto the surface as measuring radiation (MS), the measuring radiation (MS) backscattered from the surface (7″) is received and the distance between a reference point and the surface (7″) is measured interferometrically, wherein the measuring radiation (MS) is emitted and received while the surface to be gauged is being scanned, and a measuring arm and a reference interferometer arm with a partially common beam path are used, deviations from the essentially perpendicular impingement of the measuring radiation (MS) on the surface (7″) are taken into account algorithmically during distance measurement and/or are avoided or reduced during scanning by controlling the emission of the measuring radiation (MS).
    • 在用于测量其中产生调频激光束的表面(7“)的方法中,激光束作为测量辐射(MS)发射到表面上,从表面(7”)反向散射的测量辐射(MS) ),并且干涉测量参考点和表面(7“)之间的距离,其中在要被测量的表面被扫描时发射和接收测量辐射(MS),并且测量臂和参考干涉仪 使用具有部分共同光束路径的臂,在距离测量期间在算法上考虑表面(7“)上的测量辐射(MS)的基本上垂直的冲击的偏差和/或在扫描期间通过控制 发射测量辐射(MS)。
    • 10. 发明授权
    • Laser scanner
    • 激光扫描仪
    • US07933055B2
    • 2011-04-26
    • US12377278
    • 2007-08-16
    • Thomas JensenKnut Siercks
    • Thomas JensenKnut Siercks
    • G02B26/08
    • G01S17/42G01S7/4817G01S7/4818G01S17/89G02B6/32G02B6/4204
    • A laser scanner for detecting spatial surroundings comprises a stator (21), a rotor (1), mounted on the stator (21) to be rotatable about a first rotational axis, and a rotary body (2), mounted on the rotor (1) to be rotatable about a second rotational axis. A laser source (6) and a detector (7) are arranged in the rotor (1). One optical link (9) each is configured on the second rotational axis on every side of the rotary body (2) between the rotor (1) and the rotary body (2) so that emission light can be introduced by the laser source into the rotary body (2) via the first optical link (8) and reception light can be discharge from the rotary body (2) via the second optical link (9). A first rotary drive (25) drives the rotor (21) and a second rotary drive (26) drives the rotary body (2). Two goniometers (4) and evaluation electronics (5) which are connected to the laser source (6) and the detector (7) allow association of a detected distance with a corresponding direction. The rotary body (2) can have a very compact design, is completely passive and therefore does not require any power supply or transmission of signals.
    • 一种用于检测空间环境的激光扫描仪,包括一个安装在定子上的定子(21),一个转子(1),可绕第一旋转轴线转动;以及一个旋转体(2),安装在转子 )可绕第二旋转轴线旋转。 激光源(6)和检测器(7)布置在转子(1)中。 在旋转体(2)的旋转体(2)的旋转体(2)的两侧的第二旋转轴上配置有一个光学连杆(9),使得能够通过激光源将发光发射到 经由第一光学连杆(8)的旋转体(2)和接收光可以经由第二光学连接件(9)从旋转体(2)排出。 第一旋转驱动器(25)驱动转子(21),第二旋转驱动器(26)驱动旋转体(2)。 连接到激光源(6)和检测器(7)的两个测角器(4)和评估电路(5)允许检测到的距离与相应的方向相关联。 旋转体(2)可以具有非常紧凑的设计,是完全无源的,因此不需要任何电源或信号传输。