会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and apparatus for compensating magnetic field inhomogeneity
artifact in MRI
    • 用于补偿MRI中磁场不均匀性伪影的方法和装置
    • US5157330A
    • 1992-10-20
    • US659181
    • 1991-02-22
    • Leon KaufmanJoseph W. CarlsonDavid M. KramerJames D. HaleKingman Yee
    • Leon KaufmanJoseph W. CarlsonDavid M. KramerJames D. HaleKingman Yee
    • G01R33/565
    • G01R33/56563
    • A measure of magnetic field inhomogeneity along a phase-encoded (e.g. y-axis) dimension is derived in k-space from previously acquired MRI phase-encoded projection data. From this, a measure of MRI data skewing caused by such inhomogeneity is obtained and used to compensate therefor. Since the MRI data is to be multi-dimensionally Fourier Transformed in most instances anyway, a transform in the relevant phase encoded dimension (e.g., y-axis) is taken followed with phase shifting each digitized data point by an amount proportional to the measured magnitude of inhomogeneity and to the datum coordinate in the read-out dimension (e.g., x-axis) and to the datum coordinate in each phase-encode dimension (e.g., y-axis) before the data is further Fourier Transformed with respect to the read-out dimension (e.g., x-axis). If two-dimensional phase encoding is employed (e.g., as in 3DFT), then a second level of similar inhomogeneity compensation can be had in the third dimension (e.g., z-axis) as well.
    • 在先前获得的MRI相位编码投影数据中,在k空间中导出沿着相位编码(例如y轴)尺寸的磁场不均匀性的度量。 由此可以获得由这种不均匀性引起的MRI数据偏移的量度,并用于补偿。 由于MRI数据在大多数情况下要进行多维傅立叶变换,所以在相关的相位编码维度(例如,y轴)中进行变换,然后将每个数字化数据点的相移量与测量的幅度成正比 在数据进一步相对于读取的傅里叶变换之前,在读出维度(例如,x轴)和每个相位编码维度(例如,y轴)中的基准坐标之间的基准坐标 - 尺寸(例如,x轴)。 如果采用二维相位编码(例如,如3DFT中那样),则在第三维度(例如,z轴)中可以具有类似的不均匀性补偿的第二级别。
    • 2. 发明授权
    • Presbyopia correction through negative spherical aberration
    • 老花眼矫正通过负球面像差
    • US09358154B2
    • 2016-06-07
    • US12436743
    • 2009-05-06
    • Seema SomaniKingman Yee
    • Seema SomaniKingman Yee
    • A61F9/01A61F9/007A61F9/00G02C7/04A61F9/008
    • A61B3/103A61B3/1015A61F2/164A61F9/00A61F9/008A61F9/00806A61F9/00808A61F2009/00844A61F2009/00872A61F2009/0088G02C7/041G02C7/042G02C2202/22
    • Devices, systems, and methods for treating and/or determining appropriate prescriptions for one or both eyes of a patient are particularly well-suited for addressing presbyopia, often in combination with concurrent treatments of other vision defects. High-order spherical aberration may be imposed in one or both of a patient's eyes, often as a controlled amount of negative spherical aberration extending across a pupil. A desired presbyopia-mitigating quantity of high-order spherical aberration may be defined by one or more spherical Zernike coefficients, which may be combined with Zernike coefficients generated from a wavefront aberrometer. The resulting prescription can be imposed using refractive surgical techniques such as laser eye surgery, using intraocular lenses and other implanted structures, using contact lenses, using temporary or permanent corneal reshaping techniques, and/or the like.
    • 用于治疗和/或确定患者的一只眼睛或两只眼睛的适当处方的装置,系统和方法特别适合于解决老花眼,通常与其他视力缺陷的并发治疗相结合。 高次球面像差可以施加在患者眼睛的一个或两个中,通常作为延伸穿过瞳孔的受控量的负球面像差。 可以通过一个或多个球形Zernike系数来定义所需的老花眼减轻量的高阶球面像差,该Zernike系数可以与从波前像差计产生的Zernike系数组合。 所得到的处方可以使用屈光手术技术如激光眼科手术,使用眼内透镜和其它植入结构,使用隐形眼镜,使用临时或永久角膜重塑技术等来实施。
    • 6. 发明授权
    • System and method for illumination and fixation with ophthalmic diagnostic instruments
    • 用眼科诊断仪器照明和固定的系统和方法
    • US08016420B2
    • 2011-09-13
    • US11750291
    • 2007-05-17
    • Kingman YeeSeema Somani
    • Kingman YeeSeema Somani
    • A61B3/10
    • A61B3/0091A61B3/103
    • An eye measurement system may include a target that moves transverse to an optical path from the target to eye, so as to relax accommodation of the lens of the eye. The target may move transverse to the optical path on a display. The patient may be fogged while the target moves transverse to the optical path, and the target may become smaller such that the patient perceives the target to be moving away from the patient. A pupil camera may measure eye position that can be correlated with the position of the target on the display to determine that the patient has maintained fixation on the moving target. A visible measurement light beam may be pulsed subsequent to and/or during motion of the target that relaxes accommodation of the eye so as to avoid visual interference of the measurement light beam with the target on the display.
    • 眼睛测量系统可以包括横向于从目标到眼睛的光路移动的目标,以便放松眼睛的镜片的适应。 目标可以横向于显示器上的光路移动。 当目标物横向于光路移动时,患者可能会起雾,并且目标可能变小,使得患者感知到目标物远离患者。 瞳孔照相机可以测量可以与显示器上的目标位置相关联的眼睛位置,以确定患者已经维持在移动目标上的固定。 可以在目标的运动之前和/或运动期间脉冲可见的测量光束,其放松眼睛的容纳,以避免测量光束与目标在显示器上的视觉干扰。
    • 10. 发明申请
    • PRESBYOPIA CORRECTION USING PATIENT DATA
    • 使用患者数据的PRESBYOPIA校正
    • US20090234336A1
    • 2009-09-17
    • US12474144
    • 2009-05-28
    • Dimitri ChernyakGuangming DaiKingman Yee
    • Dimitri ChernyakGuangming DaiKingman Yee
    • A61F9/008A61B18/20
    • A61F9/008A61F9/00808A61F2009/00844A61F2009/00872A61F2009/00895
    • Methods and systems for treating presbyopia involve ablating a corneal surface of a first eye of a patient to enhance vision of near objects through a central zone of the first eye and ablating a second eye of the patient to enhance vision of near objects through a peripheral zone of the second eye. In the first eye, a peripheral zone is used primarily for distance vision. In the second eye, a central zone is used primarily for distance vision. Methods, devices, and systems establish an optical surface shape that mitigates or treats presbyopia in a particular patient. The combination of distance vision and near vision in a patient can be improved, often based on input patient parameters such as pupil size, residual accommodation, and power need. Iterative optimization may generate a customized corrective optical shape for the patient.
    • 用于治疗老花眼的方法和系统涉及消融患者的第一只眼睛的角膜表面,以增强邻近物体通过第一只眼睛的中心区域的视力,并消融患者的第二只眼睛,以通过周边区域增强邻近物体的视力 的第二只眼睛。 在第一只眼睛中,外围区域主要用于远视。 在第二只眼睛中,中心区主要用于远视。 方法,装置和系统建立光学表面形状,以减轻或治疗特定患者中的老花眼。 通常可以根据输入的患者参数(如瞳孔大小,残留调节量和功率需求)来改善患者的距离视力和近视力的组合。 迭代优化可以为患者生成定制的校正光学形状。