会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Highly-oriented diamond film field-effect transistor
    • 高取向金刚石膜场效应晶体管
    • US5491348A
    • 1996-02-13
    • US313986
    • 1994-09-28
    • Hisasi KoyamaoKoichi MiyataKimitsugu SaitoDavid L. DreifusBrian R. Stoner
    • Hisasi KoyamaoKoichi MiyataKimitsugu SaitoDavid L. DreifusBrian R. Stoner
    • H01L21/314H01L21/338H01L29/04H01L29/16H01L29/812
    • H01L29/1602H01L29/045H01L29/812
    • A source electrode is formed on the first semiconducting diamond film and a drain electrode is formed on the second semiconducting diamond film. A highly resistant diamond film having a thickness of between 10 .ANG. and 1 mm and an electrical resistance of at least 10.sup.2 .OMEGA..cm or more is placed between the first and second semiconducting diamond films. A gate electrode is formed on the highly resistant diamond film. Thereby, a channel region is formed by these first and second semiconducting diamond films as well as the highly resistant diamond film. All or at least a part of said first and second semiconducting diamond films and the highly resistant diamond film are made of highly-oriented diamond films where either (100) or (111) crystal planes of diamond cover at least 80% of the film surface, and the differences {.DELTA..alpha., .DELTA..beta., .DELTA..gamma.} of Euler angles {.alpha., .beta., .gamma.} which represent the crystal plane orientation, satisfy .vertline..DELTA..alpha..vertline.
    • 在第一半导体金刚石膜上形成源电极,在第二半导体金刚石膜上形成漏电极。 在第一和第二半导体金刚石膜之间放置厚度在10埃至1毫米至10欧姆或更大的电阻之间的高度耐磨的金刚石薄膜。 在耐高压金刚石膜上形成栅电极。 因此,通过这些第一和第二半导体金刚石膜以及高度耐磨的金刚石膜形成沟道区。 所述第一和第二半导体金刚石膜的全部或至少一部分和高度耐金刚石膜由高取向金刚石膜制成,金刚石的(100)或(111)晶面覆盖至少80%的膜表面 ,并且表示晶面取向的欧拉角{α,β,γ}的差异{DELTAα,DELTAβ,DELTAγ}满足| DELTAα| <10°,| DELTA beta | <10°,| DELTA gamma | <10°,同时在相邻的晶面之间。
    • 4. 发明授权
    • Semiconducting polycrystalline diamond electronic devices employing an
insulating diamond layer
    • 使用绝缘金刚石层的半导体多晶金刚石电子器件
    • US5173761A
    • 1992-12-22
    • US646848
    • 1991-01-28
    • David L. DreifusKumar DasKoichi MiyataKoji Kobashi
    • David L. DreifusKumar DasKoichi MiyataKoji Kobashi
    • C23C14/06C30B29/04H01L21/04H01L21/205H01L21/265H01L29/16H01L29/78H01L29/80H01L29/861
    • H01L29/1602H01L29/6603H01L29/66045Y10S257/921
    • A method and apparatus for contructing diamond semiconductor structures made of polycrystalline diamond thin films is disclosed. The use of a polycrystalline diamond deposition on a substrate material provides an advantage that any substrate material may be used and the ability to use polycrystalline diamond as a material is brought about through the use of an undoped diamond layer acting as an insulating layer which is formed on a boron-doped layer. Because of the structure, ion implantation can be employed to reduce the ohmic contact resistance. The ion implantation also provides that the entire structure can be made using a deep implant to form a channel layer which allows the insulating gate structure to be formed as an integral part of the device. The buried channel can be doped through the use of several implantation steps through the insulating undoped layer. As a result, the process and device is able to provide active polycrystallline diamond devices which have excellent resistance and reverse voltage characteristics while having an increased temperature capacity and increased range of operational environmental conditions when contrasted with the silicon technology. Furthermore with the disclosed process and devices, there is no requirement for a single crystal diamond substrate.
    • 公开了一种用于构造由多晶金刚石薄膜制成的金刚石半导体结构的方法和装置。 在衬底材料上使用多晶金刚石沉积提供了可以使用任何衬底材料的优点,并且通过使用形成绝缘层的未掺杂的金刚石层来形成使用多晶金刚石作为材料的能力 在硼掺杂层上。 由于结构,可以使用离子注入来降低欧姆接触电阻。 离子注入还提供了整个结构可以使用深度注入来形成沟道层,其允许绝缘栅极结构形成为器件的组成部分。 可以通过使用几个注入步骤穿过绝缘未掺杂层来掺杂掩埋沟道。 因此,与硅技术相比,该工艺和器件能够提供具有优异的电阻和反向电压特性的活性多晶金刚石器件,同时具有增加的温度容量和增加的操作环境条件的范围。 此外,通过公开的方法和装置,不需要单晶金刚石基底。
    • 9. 发明授权
    • Metal boride ohmic contact on diamond and method for making same
    • 金属硼化物欧姆接触金刚石及其制造方法
    • US5382808A
    • 1995-01-17
    • US62350
    • 1993-05-14
    • David L. DreifusGary A. Ruggles
    • David L. DreifusGary A. Ruggles
    • H01L21/04H01L29/16H01L29/45H01L23/48
    • H01L29/1602H01L21/043H01L29/45
    • An ohmic contact includes a metal boride layer on a semiconducting diamond layer. The metal boride preferably includes boron and a transition metal and, more preferably, a refractory metal. Heating of the metal boride layer and diamond during fabrication forms a highly boron-doped surface portion of the semiconductor diamond by boron diffusion. Alternately, the highly doped surface portion may be formed by selective ion implantation, annealing to form a graphitized surface portion, and removing the graphitized surface portion by etching to thereby expose the highly doped surface portion. The highly doped surface portion lowers the electrical resistivity of the contact. In addition, an interface region of a carbide may also be readily formed by heating. The carbide interface region enhances mechanical adhesion of the metal boride and also serves to lower the electrical resistance of the contact. The ohmic contact may be incorporated into many semiconductor devices including, for example, transistors, diodes, and other devices.
    • 欧姆接触包括半导体金刚石层上的金属硼化物层。 金属硼化物优选包括硼和过渡金属,更优选地包括难熔金属。 在制造过程中金属硼化物层和金刚石的加热通过硼扩散形成半导体金刚石的高硼掺杂表面部分。 或者,可以通过选择性离子注入,退火以形成石墨化表面部分,并且通过蚀刻去除石墨化表面部分从而暴露高度掺杂的表面部分来形成高度掺杂的表面部分。 高度掺杂的表面部分降低了触点的电阻率。 此外,也可以通过加热容易地形成碳化物的界面区域。 碳化物界面区域增强金属硼化物的机械粘附性,并且还用于降低接触的电阻。 欧姆接触可以并入许多半导体器件,包括例如晶体管,二极管和其它器件。