会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Stacked semiconductor device
    • 堆叠半导体器件
    • US5128732A
    • 1992-07-07
    • US199439
    • 1988-05-27
    • Kazuyuki SugaharaTadashi NishimuraShigeru KusunokiYasuo InoueYasuo Yamaguchi
    • Kazuyuki SugaharaTadashi NishimuraShigeru KusunokiYasuo InoueYasuo Yamaguchi
    • H01L27/06
    • H01L27/0688
    • A stacked semiconductor device has three-dimensional alternate layers of iconductor elements and insulating layers each electrically insulating the adjacent upper and lower layers of semiconductor elements, formed on a single crystal semiconductor substrate. A semiconductor is deposited in openings formed respectively in the insulating layers to form single crystal semiconductor layers each having the same crystal axis as the single crystal semiconductor substrate respectively over the insulating layers, and semiconductor elements are formed respectively in a plurality of layers. The opening formed through the upper insulating layer reaches the lower layer of the semiconductor element immediately below the same upper insulating layer, and is formed at a position spaced apart horizontally from the opening formed through the lower insulating layer immediately below the same upper insulating layer. A semiconductor for forming the upper layer of a semiconductor having the same crystal axis as the lower layer of a semiconductor is deposited in the opening of the upper insulating layer so that satisfactory lateral epitaxial growth will occur over the insulating layer.
    • 叠层半导体器件具有三维交替层的半导体元件和绝缘层,每个绝缘层将形成在单晶半导体衬底上的相邻的半导体元件的上层和下层电绝缘。 分别在绝缘层中形成的开口中沉积半导体,以形成分别在绝缘层上分别与单晶半导体衬底相同的晶轴的单晶半导体层,并分别形成多个半导体元件。 通过上绝缘层形成的开口到达同一上绝缘层正下方的半导体元件的下层,并形成在与通过同一上绝缘层正下方的下绝缘层形成的开口水平间隔开的位置处。 用于形成具有与半导体的下层相同的晶轴的半导体的上层的半导体被沉积在上绝缘层的开口中,使得在绝缘层上将发生令人满意的横向外延生长。
    • 6. 发明授权
    • Process for producing single crystal semiconductor layer and
semiconductor device produced by said process
    • 通过所述方法制造单晶半导体层和半导体器件的制造方法
    • US4822752A
    • 1989-04-18
    • US022717
    • 1987-03-06
    • Kazuyuki SugaharaTadashi NishimuraShigeru KusunokiYasuo Inoue
    • Kazuyuki SugaharaTadashi NishimuraShigeru KusunokiYasuo Inoue
    • H01L21/20H01L21/268H01L21/822H01L29/04H01L21/306H01L21/326H01L21/479
    • H01L21/8221H01L21/2026H01L21/268H01L29/045Y10S117/904Y10S148/09Y10S148/091Y10S148/093
    • Disclosed herein is a process for producing a single crystal layer of a semiconductor device, which comprises the steps of providing an oxide insulator layer separated by an opening part for seeding, on a major surface of a single crystal semiconductor substrate of the cubic system, providing a polycrystalline or amorphous semiconductor layer on the entire surface of the insulator layer inclusive of the opening part, then providing a protective layer comprising at least a reflective or anti-reflection film comprising strips of a predetermined width, in a predetermined direction relative to the opening part and at a predetermined interval, the protective layer capable of controlling the temperature distributions in the semiconductor layer at the parts corresponding to the stripes or the parts not corresponding to the stripes, thereby completing a base for producing a semiconductor device, thereafter the surface of the base is irradiated with an energy beam through the striped reflective or anti-reflection film to melt the polycrystalline or amorphous semiconductor and scanning the energy beam in a predetermined direction such that the direction of the crystal of the semiconductor re-solidified and converted into a single crystal accords with a {111} plane, to produce the single crystal of the semiconductor device. Also disclosed is a semiconductor device produced by the method, which comprises a single crystal layer having a wide range of a crystal in a predetermined direction relative to the facial orientation of the major surface of the substrate, and has a three-dimensional semiconductor circuit element construction.
    • 本发明公开了一种制造半导体器件的单晶层的方法,其包括以下步骤:在立方晶系的单晶半导体衬底的主表面上提供由用于接种的开口部分开的氧化物绝缘体层,提供 在包括开口部分的绝缘体层的整个表面上的多晶或非晶半导体层,然后提供保护层,该保护层至少包括反射膜或防反射膜,该反射膜或抗反射膜包括相对于开口的预定方向的预定宽度的条 部分并且以预定间隔,保护层能够控制对应于条纹的部分或不对应于条纹的部分的半导体层中的温度分布,从而完成用于制造半导体器件的基底,之后, 用能量束通过条纹反射照射基座 或抗反射膜,以熔化多晶或非晶半导体并沿预定方向扫描能量束,使得半导体晶体的方向重新固化并转换成单晶符合{111}面,以产生 半导体器件的单晶。 还公开了一种通过该方法制造的半导体器件,该半导体器件包括相对于衬底的主表面的面取向在预定方向上具有宽范围的晶体的单晶层,并且具有三维半导体电路元件 施工。
    • 7. 发明授权
    • Method of manufacturing semiconductor crystalline layer
    • 半导体晶体层的制造方法
    • US4861418A
    • 1989-08-29
    • US22402
    • 1987-03-06
    • Tadashi NishimuraYasuo InoueKazuyuki SugaharaShigeru Kusunoki
    • Tadashi NishimuraYasuo InoueKazuyuki SugaharaShigeru Kusunoki
    • H01L21/20H01L21/263H01L21/268H01L21/762H01L29/04
    • H01L29/045H01L21/2026H01L21/268H01L21/76248Y10S117/904
    • A method of manufacturing a semiconductor crystalline layer comprising the following steps: a step of forming, on a single crystalline substrate composed of a semiconductor having a main face on face and having a diamond-type crystal structure, an orientation flat face in which the direction of the intersection with the main face makes a predetermined angle relative to the direction on the main face and which serves as a reference for defining the direction of arranging semiconductor chips formed on the substrate; a step of forming, on the main face of the substrate, an insulation layer at least a portion of which has an opening reaching the main face and which insulates the substrate at the region other than the opening; a step of forming a semiconductor layer composed of a polycrystalline or amorphous semiconductor on the surface of the opening and the insulation layer; a step of forming a reflectivity varying layer which is in the direction in parallel with or vertical to the intersection between the orientation flat face and the main face, has the width and the distance in a predetermined period and is set so as to show periodical reflectivity variation to the argon laser beams; and a step of scanning the argon laser beams under continuous irradiation by way of the reflectivity varying layer to the semiconductor layer in the direction identical with or at an angle within a certain permissible range to the direction of the main face or the direction equivalent thereto.
    • 一种制造半导体结晶层的方法,包括以下步骤:在由具有主面的具有金刚石型晶体结构的半导体构成的单晶衬底上形成取向平面 其与主面的交点的方向相对于主面上的方向<110>成预定角度,并且作为用于限定形成在基板上的半导体芯片的排列方向的基准; 在所述基板的主面上形成绝缘层的步骤,所述绝缘层的至少一部分具有到达所述主面的开口,并且使所述基板与所述开口以外的区域绝缘; 在开口和绝缘层的表面上形成由多晶或非晶半导体构成的半导体层的步骤; 在与定向平面和主面之间的交叉部分平行或垂直的方向上形成反射率变化层的步骤具有在预定时间段内的宽度和距离,并且被设置为显示周期性反射率 对氩激光束的变化; 以及通过所述反射率变化层在与所述主面或所述主面的方向<110>的一定允许范围内相同或成一定角度的方向将所述氩激光束扫描到所述半导体层的步骤 相当于此。
    • 8. 发明授权
    • Process for producing single crystal semiconductor layer and
semiconductor device produced by said process
    • 通过所述方法制造单晶半导体层和半导体器件的制造方法
    • US5371381A
    • 1994-12-06
    • US587500
    • 1990-09-24
    • Kazuyuki SugaharaTadashi NishimuraShigeru KusunokiYasuo Inoue
    • Kazuyuki SugaharaTadashi NishimuraShigeru KusunokiYasuo Inoue
    • H01L21/20H01L21/268H01L21/822H01L29/04H01L27/04
    • H01L21/8221H01L21/2026H01L21/268H01L29/045Y10S117/904Y10S148/09Y10S148/091Y10S148/093
    • Disclosed herein is a process for producing a single crystal layer of a semiconductor device, which comprises the steps of providing an oxide insulator layer separated by an opening part for seeding, on a major surface of a single crystal semiconductor substrate of the cubic system, providing a polycrystalline or amorphous semiconductor layer on the entire surface of the insulator layer inclusive of the opening part, then providing a protective layer comprising at least a reflective or anti-reflection film comprising stripes of a predetermined width, in a predetermined direction relative to the opening part and at a predetermined interval, the protective layer capable of controlling the temperature distributions in the semiconductor layer at the parts corresponding to the stripes or the parts not corresponding to the stripes, thereby completing a base for producing a semiconductor device, thereafter the surface of the base is irradiated with an energy beam through the striped reflective or anti-reflection film to melt the polycrystalline or amorphous semiconductor and scanning the energy beam in a predetermined direction such that the direction of the crystal of the semiconductor re-solidified and converted into a single crystal accords with a {111} plane, to produce the single crystal of the semiconductor device. Also disclosed is a semiconductor device produced by the method, which comprises a single crystal layer having a wide range of a crystal in a predetermined direction relative to the facial orientation of the major surface of the substrate, and has a three-dimensional semiconductor circuit element construction.
    • 本发明公开了一种制造半导体器件的单晶层的方法,其包括以下步骤:在立方晶系的单晶半导体衬底的主表面上提供由用于接种的开口部分开的氧化物绝缘体层,提供 在包括开口部分的绝缘体层的整个表面上的多晶或非晶半导体层,然后提供保护层,该保护层至少包括反射膜或防反射膜,该反射膜或防反射膜包含预定宽度的条,相对于开口 部分并且以预定间隔,保护层能够控制对应于条纹的部分或不对应于条纹的部分的半导体层中的温度分布,从而完成用于制造半导体器件的基底,之后, 通过条纹反射照射能量束 e或抗反射膜,以熔化多晶或非晶半导体并沿预定方向扫描能量束,使得半导体晶体的方向重新固化并转换成单晶符合{111}面,至 产生半导体器件的单晶。 还公开了一种通过该方法制造的半导体器件,该半导体器件包括相对于衬底的主表面的面取向在预定方向上具有宽范围的晶体的单晶层,并且具有三维半导体电路元件 施工。
    • 10. 发明授权
    • Zone melting apparatus for monocrystallizing semiconductor layer on
insulator layer
    • 绝缘体层上半导体层单晶区域熔融装置
    • US4694143A
    • 1987-09-15
    • US815069
    • 1985-12-31
    • Tadashi NishimuraKazuyuki SugaharaShigeru KusunokiYasuo Inoue
    • Tadashi NishimuraKazuyuki SugaharaShigeru KusunokiYasuo Inoue
    • H01L21/20C30B13/28H01L21/26H05B3/00H05B3/64F27B5/14F27D11/00
    • C30B13/28H05B3/0047
    • A zone melting apparatus, in accordance with the present invention for monocrystallizing a semiconductor layer in a layered substance, includes: an upper elongated heater for zone melting of the semiconductor layer, the upper heater being disposed above and parallel to the semiconductor layer; a plurality of lower elongated heaters for heating the whole layered substance, the lower heaters being disposed in a plane below and parallel to the layered substance and the axis of each of the lower heaters being substantially perpendicular to the axis of the upper heater; a plurality of power suppliers for supplying electric power to the lower heaters; one or more temperature sensors for estimating the temperature of the layered substance; and a controller for controlling the power suppliers in response to the output of the temperature sensor(s), the controller making control so that the temperature of the central portion of the layered substance is slightly lower than that of the outer portions thereof.
    • 根据本发明的用于使层状物质中的半导体层单晶化的区域熔化装置包括:用于半导体层的区域熔化的上部细长加热器,上部加热器设置在半导体层的上方并平行; 多个下部细长加热器,用于加热整个层状物质,下部加热器设置在层叠物质下方并平行的平面中,并且每个下部加热器的轴线基本上垂直于上部加热器的轴线; 用于向下部加热器供电的多个供电装置; 用于估计分层物质的温度的一个或多个温度传感器; 以及控制器,用于响应于温度传感器的输出来控制供电器,控制器进行控制,使得层状物质的中心部分的温度略低于其外部部分的温度。