会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Mixed ionic conductors
    • 混合离子导体
    • US5387330A
    • 1995-02-07
    • US913958
    • 1992-07-17
    • Noboru TaniguchiJunji NiikuraKazuhito HatohTakaharu Gamo
    • Noboru TaniguchiJunji NiikuraKazuhito HatohTakaharu Gamo
    • C01F17/00C04B35/00C04B35/50C30B29/22H01B1/06H01M8/12G01N27/406G01N27/407
    • C01F17/0018C04B35/50H01M8/126C01P2002/34C01P2002/52C01P2004/61C01P2004/62C01P2006/10C01P2006/40Y02E60/525Y02P70/56
    • The present invention relates to a mixing ion conductive material for use in an electrochemical device such as a fuel cell or a sensor and more particularly to the super ion conductive material based on protons or oxide cations and also to a synthesizing method of the mixing ion conductive material.A mixing ion conductive oxide which has a proton conductivity and/or oxide cation conductivity and has a composition comprising 1 mol of barium oxide, 1-x mol of cerium oxide and x mol of gadolinium oxide; wherein 1>x>0.1. When x=0.2, the mixing ion conductive material shows a conductivity shown in FIG. 2. The oxide sintered body mentioned above has a density higher than 96.5% of the theoretical density and a grain size of 0.1 to 10 micron. The synthesizing method of the oxide sintered body is characterized by that the powders for use in the final heat treatment is crushed into a particle size less than 3 micron and is subjected to a vacuum drying process. Further, the sintering temperature is specified to a temperature between 1635.degree. C. and 1665.degree. C.
    • 本发明涉及用于诸如燃料电池或传感器的电化学装置中的混合离子传导材料,更具体地涉及基于质子或氧化物阳离子的超离子导电材料,还涉及一种混合离子导电 材料。 具有质子传导性和/或氧化物阳离子导电性并具有1摩尔氧化钡,1摩尔氧化铈和x摩尔氧化钆的组成的混合离子传导性氧化物; 其中1> x> 0.1。 当x = 0.2时,混合离子传导材料显示出如图1所示的电导率。 上述氧化物烧结体的密度高于理论密度的96.5%,粒径为0.1〜10微米。 氧化物烧结体的合成方法的特征在于,用于最终热处理的粉末粉碎成小于3微米的粒度,并进行真空干燥处理。 此外,烧结温度规定为1635℃至1665℃之间的温度。
    • 10. 发明授权
    • Method of producing hydrogen-storing alloy and electrode making use of
the alloy
    • 使用该合金制备储氢合金和电极的方法
    • US5281390A
    • 1994-01-25
    • US870224
    • 1992-04-20
    • Takaharu GamoYoshio MoriwakiTsutomu IwakiAkemi Shintani
    • Takaharu GamoYoshio MoriwakiTsutomu IwakiAkemi Shintani
    • C01B3/00C22C1/02H01M4/38C22C16/00C22C30/00
    • C01B3/0031C22C1/02H01M4/383Y02E60/327Y10S420/90
    • In the method of the present invention for producing a hydrogen-storing alloy, part or whole of single substance of Zr as a starting material is replaced with a ferrozirconium or a zircalloy. This method enables production of a hydrogen-storing alloy at reduced material and production costs and with high efficiency and safety of work. The alloy produced by this method has high homogeneity with no segregation. It is thus possible to obtain a hydrogen-storing alloy superior in hydrogen-storing characteristics such as hydrogen storage capacity, reaction speed, and electrode reaction efficiency in an electrolyte. It is also possible to obtain, by using this alloy, a nickel-hydrogen storage battery having a large storage capacity and capable of performing quick charging and discharging, while exhibiting longer life and higher economy.
    • PCT No.PCT / JP89 / 01319 Sec。 371日期1990年8月2日第 102(e)1990年8月2日PCT PCT 1989年12月28日PCT公布。 公开号WO90 / 07585 日本1990年7月12日。在本发明的制备储氢合金的方法中,作为起始原料的Zr的单一物质的一部分或全部被铁氟化锆或锆合金代替。 该方法能够以减少的材料和生产成本以及高效率和安全的工作生产储氢合金。 通过该方法制造的合金具有高均匀性,没有偏析。 因此,可以获得在电解液中的储氢能力,反应速度,电极反应效率等储氢特性优异的储氢合金。 通过使用这种合金,也可以获得具有大存储容量并能够进行快速充放电的镍氢蓄电池,同时具有更长的寿命和更高的经济性。