会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • X-ray detector for grating-based phase-contrast imaging
    • US11000249B2
    • 2021-05-11
    • US16347992
    • 2017-11-09
    • KONINKLIJKE PHILIPS N.V.
    • Heiner DaerrThomas Koehler
    • A61B6/00G01N23/041G01T1/20G01N23/20A61B6/03G21K1/02
    • An X-ray detector (10) for a phase contrast imaging system (100) and a phase contrast imaging system (100) with such detector (10) are provided. The X-ray detector (10) comprises a scintillation device (12) and a photodetector (14) with a plurality of photosensitive pixels (15) optically coupled to the scintillation device (12), wherein the X-ray detector (10) comprises a primary axis (16) parallel to a surface normal vector of the scintillation device (12), and wherein the scintillation device (12) comprises a wafer substrate (18) having a plurality of grooves (20), which are spaced apart from each other. Each of the grooves (20) extends to a depth (22) along a first direction (21) from a first side (13) of the scintillation device (12) into the wafer substrate (18), wherein each of the grooves (20) is at least partially filled with a scintillation material. Therein, the first direction (21) of at least a part of the plurality of grooves (20) is different from the primary axis (16), such that at least a part of the plurality grooves (20) is tilted with respect to the primary axis (16). An angle between the first direction (21) of a groove (20) arranged in a center region (24) of the scintillation device (12) and the primary axis (16) is smaller than an angle between the first direction (21) of a groove (20) arranged in an outer region (26) of the scintillation device (12) and the primary axis (16).
    • 7. 发明授权
    • Grating structure for x-ray imaging
    • US10923243B2
    • 2021-02-16
    • US16469310
    • 2017-12-12
    • KONINKLIJKE PHILIPS N.V.
    • Thomas KoehlerGereon Vogtmeier
    • G21K1/06
    • The present invention relates to a grating in X-ray imaging. In order to provide a grating with a facilitated stabilization, a grating (10) for X-ray imaging is provided that comprises a grating structure (12) with a first plurality of bar members (14) and a second plurality of gaps (16). A fixation structure (18) is arranged between the bar members to stabilize the grating bar members. The bar members are extending in a length direction (20) and in a height direction (22). The bar members are also spaced from each other by one of the gaps in a direction transverse to the height direction. The gaps are arranged in a gap direction parallel to the length direction. The fixation structure comprises a plurality of bridging web members (24) that are provided between adjacent bar members. Further, the web members are longitudinal web members that are extending in the gap direction and that are provided in an inclined manner in relation to the height direction. The inclination is provided in the gap direction.
    • 10. 发明授权
    • Computer tomography X-ray imaging
    • US10485501B2
    • 2019-11-26
    • US15762114
    • 2017-09-04
    • KONINKLIJKE PHILIPS N.V.
    • Bernhard Johannes BrendelThomas KoehlerRoland Proksa
    • G06K9/40G06K9/00A61B6/00G06T11/00A61B6/03
    • A61B6/482A61B6/032A61B6/4241A61B6/5211G06T11/003G06T2207/10081G06T2211/408
    • The present invention relates to computer tomography X-ray imaging. In order to provide further improved data for the reconstruction, a system (10) for computer tomography X-ray imaging is provided. The system comprises a data interface (12) and a processing unit (14). The data interface is configured to provide at least first and second CT X-ray radiation projection data for at least a first and second X-ray energy range, which ranges are different from each other. The processing unit is configured to determine a correction for slice normalization, and to apply an equal slice normalization for the first and the second CT X-ray projection data and thereby generating prepared first and second CT X-ray projection data. For the correction, the equal slice normalization is based on measured data of outer detector elements. Further, the data interface is configured to provide the prepared first and second CT X-ray projection data for further processing. In an example, the system further comprises a computer tomography X-ray imaging acquisition arrangement (20) with an X-ray source (22) configured to generate an X-ray beam, and an X-ray detector (26) configured as an energy discriminating X-ray detector to simultaneously provide X-ray radiation projection data for at least two different X-ray energy ranges separately. The computer tomography X-ray imaging acquisition arrangement is configured to acquire at least the first and second CT X-ray projection data of a region of interest of an object for the at least first and second X-ray energy range.