会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Method of manufacturing semiconductor device and method of processing substrate
    • US10290494B2
    • 2019-05-14
    • US15208708
    • 2016-07-13
    • Kokusai Electric Corporation
    • Masanao FukudaTakafumi SasakiKazuhiro Yuasa
    • H01L21/02H01L21/316C23C16/40C23C16/455C23C16/458C23C16/52
    • A substrate processing apparatus including: a reaction tube configured to process a plurality of substrates; a heater configured to heat an inside of the reaction tube; a holder configured to arrange and hold the plurality of substrates within the reaction tube; a hydrogen-containing gas supply system including a first nozzle disposed in an area which horizontally surrounds a substrate arrangement area where the plurality of substrates are arranged, and configured to supply a hydrogen-containing gas from a plurality of locations of the area into the reaction tube; an oxygen-containing gas supply system including a second nozzle disposed in the area which horizontally surrounds the substrate arrangement area, and configured to supply an oxygen-containing gas from a plurality of locations of the area into the reaction tube; a pressure controller configured to control a pressure inside the reaction tube to be lower than an atmospheric pressure; and a controller configured to control the heater, the hydrogen-containing gas supply system, the oxygen-containing gas supply system and the pressure controller such that the hydrogen-containing gas and the oxygen-containing gas are supplied simultaneously into the reaction tube accommodating the plurality of substrates and being under a heated atmosphere having a pressure lower than an atmospheric pressure through the first nozzle and the second nozzle, respectively, so that the hydrogen-containing gas and the oxygen-containing gas react with each other in the area which horizontally surrounds the substrate arrangement area to form a reactive species in the reaction tube, thereby thermally oxidizing each of the plurality of substrates by the reactive species, wherein the first nozzle is provided with a plurality of first gas ejection holes, and the second nozzle is provided with as many second gas ejection holes as at least the plurality of substrates such that at least each of the second gas ejection holes corresponds to each of the plurality of substrates is disclosed.