会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method of injecting plurality of spacecraft into different orbits individually
    • 将多个航天器分别注入不同轨道的方法
    • US07747361B2
    • 2010-06-29
    • US11326440
    • 2006-01-06
    • Junichiro KawaguchiYasuhiro KawakatsuOsamu Mori
    • Junichiro KawaguchiYasuhiro KawakatsuOsamu Mori
    • G05D1/00B64G1/00B64G1/10
    • B64G1/242B64G1/007B64G1/1085
    • In a method for injecting a plurality of spacecraft into different circum-earth or interplanetary orbits individually in a single launch, a plurality of spacecraft coupled to an assist module are injected into an interplanetary orbit having a periodicity synchronous with the earth's revolution period. Then, in a maneuver allowing the assist module to re-counter with and pass near to the earth (Earth swing-by), the assist module appropriately performs an orbital change maneuver and a separation maneuver for each of the spacecraft in a sequential order. Through these maneuvers, a closest-approach point to the earth is changed for each of the spacecraft so as to drastically change a subsequent orbital element for each of the spacecraft. The assist module takes a sufficient time to determine a target orbit for each of the spacecraft with a high degree of accuracy until a half month to several days before a closest-approach time in the Earth swing-by. Based on the determined orbit, the assist module makes an orbit correction of about several m/sec in a sequential order, and then separates the spacecraft therefrom in a sequential order. In this process, an inertia navigation is performed based on an accelerometer mounted in the assist module and information about attitude.
    • 在单个发射中单独地将多个航天器注入不同的环形或星际轨道的方法中,耦合到辅助模块的多个航天器被注入具有与地球旋转​​周期同步的周期的行星际轨道。 然后,辅助模块在允许辅助模块重新对抗并通过接近地球(地球绕行)的操作中,按顺序适当地执行每个航天器的轨道改变机动和分离机动。 通过这些演习,对于每个航天器,对地球的最接近的点都会发生变化,从而大大改变每个航天器的后续轨道元素。 辅助模块需要足够的时间以高精确度确定每个航天器的目标轨道,直到地球中最接近的时间之前的半个月到几天。 基于所确定的轨道,辅助模块按顺序进行约几m / sec的轨道校正,然后以顺序的顺序分离航天器。 在该过程中,基于安装在辅助模块中的加速度计和关于姿态的信息执行惯性导航。
    • 3. 发明授权
    • Method for designing an orbit of a spacecraft
    • 设计航天器轨道的方法
    • US07744036B2
    • 2010-06-29
    • US11490344
    • 2006-07-19
    • Junichiro KawaguchiKohta Tarao
    • Junichiro KawaguchiKohta Tarao
    • B64G1/10
    • B64G1/242B64G1/26
    • A method is disclosed for designing an orbit of a spacecraft which allows the spacecraft to take a small-radius halo orbit near a Lagrange point while avoiding the prohibited zone where the spacecraft may be shadowed or might be prevented from making communication. The method makes it possible to have a closed orbit although being similar to a Lissajous orbit, under a restricted condition where a propulsion force magnitude applied to a spacecraft is fixed, and where it rotates at a constant angular velocity, based on the equation of motion close to a Lagrange point. The method also provide a theory for guiding/controlling the orbit of a spacecraft, that is, the embodiment of the above orbit design method.
    • 公开了一种用于设计航天器的轨道的方法,其允许航天器在拉格朗日点附近采取小半径的光环轨道,同时避免航天器可能被遮蔽或可能被阻止进行通信的禁止区域。 该方法使得尽可能地具有闭合轨道,但是在受到限制的条件下,其中施加到航天器的推进力大小是固定的,并且其以恒定的角速度旋转,基于运动方程 靠近拉格朗日点。 该方法还提供了用于引导/控制航天器轨道的理论,即上述轨道设计方法的实施例。
    • 6. 发明申请
    • Ultrahigh Altitude Sun-Synchronous Orbit Satellite System
    • 超高空太阳同步轨道卫星系统
    • US20080029650A1
    • 2008-02-07
    • US11630087
    • 2004-06-22
    • Junichiro Kawaguchi
    • Junichiro Kawaguchi
    • B64G1/10
    • B64G1/242B64G1/1007B64G1/1021
    • A system which comprises a sun-synchronous orbit satellite (3) revolving around the sun (5) and apparently revolving around the earth at a period of approximately one year while keeping the direction and the geometry to the sun and the earth (4) constant at an ultrahigh altitude of several millions km keeping clear of the influence zone of the earth, and which provides any of astronomical or global observation service and communication service. An observation satellite, which meets such conditions that a vector normal to a virtual orbital plane centering around the earth is substantially fixed regardless of revolution, can sweep the substantially entire celestial sphere during a single revolution while avoiding the effect of light and heat from the earth, and can keep a local solar time at a sub-satellite point on the surface of the earth constant, can be attained. A communication satellite, where the substantially hemisphere of the earth can be covered at a time simultaneously with one satellite and the substantially entire region of the earth can be covered with a small number or three satellites, is attained. Geometrical relations with the sun and the earth can be frozen approximately by the adjustment of the i/e ratio or by the use of perturbation by the attraction of the earth gravity. Operation from launch to insertion into an intended orbit can be achieved with significantly low fuel consumption by utilizing the perturbation owing to the attraction of the earth gravity.
    • 一种系统,其包括围绕太阳(5)旋转的太阳同步轨道卫星(3),并且在大约一年的时间周围围绕地球旋转,同时保持方向和几何形状对太阳和地球(4)恒定 在数百万公里的超高的高度,保持了地球的影响区域,并提供任何天文或全球观测服务和通信服务。 一种观测卫星符合如下条件:垂直于围绕地球的虚拟轨道平面的向量基本上是固定的,无论转动如何,可以在单次旋转期间扫掠基本上整个天球,同时避免来自地球的光和热的影响 ,并且可以在地球表面的亚卫星点保持局部太阳时间常数,可以实现。 一个通信卫星,其中地球的大致半球可以同时覆盖一颗卫星,并且可以用少量或三颗卫星覆盖地球的大致整个区域。 几乎与太阳和地球的关系可以通过i / e比的调整或通过吸引地球重力的扰动来大致冻结。 通过利用由于地球重力的吸引引起的扰动,可以以显着低的燃料消耗实现从发射到插入到预定轨道的操作。
    • 7. 发明授权
    • Large membrane space structure and method for its deployment and expansion
    • 大型膜空间结构及其部署和扩展方法
    • US06689952B2
    • 2004-02-10
    • US10014346
    • 2001-12-14
    • Junichiro Kawaguchi
    • Junichiro Kawaguchi
    • H01L31045
    • H01Q1/288H01Q15/161
    • A large membrane space structure deployed and spanned by centrifugal force owing to the spin motion, contains a hub located at a central portion thereof and a sail including a plurality of petals attached to the hub by supports. Each of the petals has regions symmetrical to an imaginary center line passing through the center of the hub. Membranes are spanned on the regions. Each of the membranes is divided into parts of suitable shapes, and adjacent membranes are discretely connected to each other by bridge belts to suppress the residual crease strain. The petals are symmetric with respect to the center of the hub. Deployment force is provided in the circumferential direction by the introduction of imaginary tension lines. The petals may be connected to each other to help deployment.
    • 通过旋转运动由离心力部署和跨越的大的膜空间结构包含位于其中心部分处的轮毂和包括通过支撑件附接到轮毂的多个花瓣的帆。 每个花瓣具有与穿过轮毂中心的假想中心线对称的区域。 膜跨越区域。 每个膜被分成适当形状的部分,并且相邻的膜通过桥接带彼此离散地连接以抑制残余的折痕应变。 花瓣相对于轮毂的中心对称。 通过引入假想张力线在圆周方向上设置展开力。 花瓣可以相互连接以帮助部署。
    • 9. 发明申请
    • METHOD FOR DESIGNING AN ORBIT OF A SPACECRAFT
    • 用于设计空间的轨道的方法
    • US20100108819A1
    • 2010-05-06
    • US11490344
    • 2006-07-19
    • Junichiro KawaguchiKohta Tarao
    • Junichiro KawaguchiKohta Tarao
    • B64G1/10
    • B64G1/242B64G1/26
    • A method is disclosed for designing an orbit of a spacecraft which allows the spacecraft to take a small-radius halo orbit near a Lagrange point while avoiding the prohibited zone where the spacecraft may be shadowed or might be prevented from making communication. The method makes it possible to have a closed orbit although being similar to a Lissajous orbit, under a restricted condition where a propulsion force magnitude applied to a spacecraft is fixed, and where it rotates at a constant angular velocity, based on the equation of motion close to a Lagrange point. The method also provide a theory for guiding/controlling the orbit of a spacecraft, that is, the embodiment of the above orbit design method.
    • 公开了一种用于设计航天器的轨道的方法,其允许航天器在拉格朗日点附近采取小半径的光环轨道,同时避免航天器可能被遮蔽或可能被阻止进行通信的禁止区域。 该方法使得尽可能地具有闭合轨道,但是在受到限制的条件下,其中施加到航天器的推进力大小是固定的,并且其以恒定的角速度旋转,基于运动方程 靠近拉格朗日点。 该方法还提供了用于引导/控制航天器轨道的理论,即上述轨道设计方法的实施例。
    • 10. 发明授权
    • Method and a device for stabilization control of a vehicle traffic volume
    • 一种用于稳定车辆交通量控制的方法和装置
    • US07623956B2
    • 2009-11-24
    • US11365316
    • 2006-02-28
    • Junichiro Kawaguchi
    • Junichiro Kawaguchi
    • G08G1/01G06F19/00
    • G08G1/22B60W30/165G08G1/161
    • The present invention provides a method and a device, which is in one hand implemented as a man-machine system in which the operations are shared such that a driver takes in charge of an inter-vehicle distance and speed control, while on the other hand a quantity of controls for stabilizing the inter-vehicle distance sequence is calculated automatically and additionally incorporated by the addition in respective vehicles. The stabilization of the inter-vehicle distance can be realized by employing the distributed control method in which a set of acceleration and deceleration information from a vehicle traveling ahead is appropriately integrated and transmitted in relay to a following vehicle. This enables the stabilization of the inter-vehicle distance sequence without requiring the inter-vehicle distance measurement in itself and the easy installation of equipment, and realizes a method in which safety is ensured by allowing the driver to still take charge of a local control.
    • 本发明提供了一种方法和装置,其一方面实现为人机系统,其中共享操作,使得驾驶员负责车辆间距离和速度控制,而另一方面 自动计算用于稳定车辆间距离序列的量的控制,并且通过在相应的车辆中的添加另外地并入。 车辆间距离的稳定化可以通过采用分散控制方法来实现,其中来自前方行驶的车辆的一组加速和减速信息被适当地整合并且以继电器的形式发送给后续的车辆。 这使得能够稳定车辆间距离序列,而不需要本身的车间距离测量和设备的容易安装,并且实现了通过允许驾驶员仍然负责本地控制来确保安全性的方法。