会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Wavefront sensor with optical path difference compensation
    • 具有光程差补偿的波前传感器
    • US07733500B2
    • 2010-06-08
    • US12232370
    • 2008-09-16
    • Jun NishikawaYutaka Hayano
    • Jun NishikawaYutaka Hayano
    • G01B11/02
    • G01J9/0215G01B9/02098
    • In a wavefront sensor, an optical wavefront to be measured is split into a first optical path and a second optical path. A wavefront W1 in the first optical path is transmitted through a first compensation member 7, and a wavefront W2 in the second optical path is transmitted through a second compensation member 8. Wavefronts W1 and W2 are mixed together by a semi-transparent mirror 6 with the wavefronts being displaced from each other by a shearing quantity S to form an interference fringe. An optical path difference that occurs between two wavefronts W1′ and W2′ which reach the interference measurement plane M in a state where the wavefronts are inclined due to the arrival direction of the optical wavefront to be measured is compensated when the wavefronts W1′ and W2′ are transmitted through the first and second optical path difference compensation members 7 and 8, respectively.
    • 在波前传感器中,待测量的光波阵面被分割为第一光路和第二光路。 第一光路中的波前W1通过第一补偿部件7透射,第二光路中的波前W2通过第二补偿部件8透射。波前W1和W2通过半透明反射镜6与 波前通过剪切量S彼此移位以形成干涉条纹。 当波前W1'和W2被补偿时,在波前被测量的光波阵面的到达方向倾斜的状态下到达干涉测量平面M的两个波前W1'和W2'之间发生的光程差被补偿 '分别透过第一和第二光程差补偿元件7和8。
    • 2. 发明申请
    • Wavefront sensor
    • 波前传感器
    • US20090161115A1
    • 2009-06-25
    • US12232370
    • 2008-09-16
    • Jun NishikawaYutaka Hayano
    • Jun NishikawaYutaka Hayano
    • G01B9/02
    • G01J9/0215G01B9/02098
    • In a wavefront sensor, an optical wavefront to be measured that has entered an entrance pupil P is split into a first optical path L1 and a second optical path L2 by a semi-transparent mirror 3. A wavefront W1 traveling in the first optical path L1 is transmitted through a first optical path difference compensation member 7, and a wavefront W2 traveling in the second optical path L2 is transmitted through a second optical path difference compensation member 8. The wavefronts W1 and W2 are mixed together again by a semi-transparent mirror 6 in a state where the wavefronts are displaced from each other by a shearing quantity S to form an interference fringe on an interference measurement plane M. The intensity distribution of the interference fringe is measured by a photodetector 9, and a configuration of the optical wavefront to be measured is measured by a wavefront measurement portion 10. An optical path difference that occurs between a wavefront W1′ and a wavefront W2′ which reach the interference measurement plane M in a state where the wavefronts are inclined due to the arrival direction of the optical wavefront to be measured is compensated in advance when the wavefronts W1′ and W2′ are transmitted through the first and second optical path difference compensation members 7 and 8, respectively.
    • 在波前传感器中,已经进入入射光瞳P的要测量的光波阵面被半透明反射镜3分成第一光路L1和第二光路L2。在第一光路L1中行进的波前W1 通过第一光程差补偿部件7透射,并且在第二光路L2中行进的波前W2通过第二光程差补偿部件8透射。波前W1和W2再次通过半透明反射镜混合在一起 在波前被剪切量S彼此偏移的状态下,在干涉测量平面M上形成干涉条纹。干涉条纹的强度分布由光电检测器9测量,光波阵面的结构 被测量的波前测量部分10测量。在波前W1'和波前W2'之间出现的光程差 当波前W1'和W2'通过第一和第二光程差补偿部件7传送时,预先补偿由于待测量的光波阵面的到达方向使波前倾斜的状态下的e个干涉测量用平面M 和8。
    • 4. 发明申请
    • Electronic Device and Method for Manufacturing the Same
    • 电子器件及其制造方法
    • US20080081200A1
    • 2008-04-03
    • US11935854
    • 2007-11-06
    • Hiroshi KatsubeJun Nishikawa
    • Hiroshi KatsubeJun Nishikawa
    • B32B15/04B05D7/00
    • H01G4/30H01G4/2325Y10T428/31678
    • A highly reliable electronic device and a method for manufacturing the same are provided, the electronic device preventing entry of a plating solution via an external electrode and entry of moisture of external environment inside thereof, and generating no soldering defects nor solder popping defects which are caused by precipitation of a glass component on a surface of the external electrode. The structure is formed of Cu-baked electrode layers 6a and 6b primarily composed of Cu, Cu plating layers 7a and 7b which are formed on the Cu-baked electrode layers 6a and 6b and which are processed by a recrystallization treatment, and upper-side plating layers 9a and 9b formed on the Cu plating layers 7a and 7b. After the Cu plating layers 7a and 7b are formed, a heat treatment is performed at a temperature in the range of a temperature at which the Cu plating layers 7a and 7b are recrystallized to a temperature at which glass contained in a conductive paste is not softened (both inclusive), so that the Cu plating layers 7a and 7b are recrystallized.
    • 提供了一种高度可靠的电子装置及其制造方法,电子装置防止电镀液经由外部电极进入,并且在其内部进入外部环境的湿气,并且不产生焊接缺陷或引起的焊料缺陷 通过在外部电极的表面上析出玻璃成分。 该结构由主要由形成在Cu烧结电极层6a和6b上的Cu,Cu镀层7a和7b组成的Cu烧结电极层6a和6b形成,并且通过重结晶 处理,以及形成在Cu镀层7a和7b上的上侧镀层9a和9b。 在形成Cu镀层7a和7b之后,在Cu镀层7a和7b重结晶的温度范围内的温度下进行热处理至包含导电性的玻璃的温度 糊料不软化(包括),使得Cu镀层7a和7b重结晶。
    • 5. 发明授权
    • Projection type image display apparatus and projection optical system
    • 投影型图像显示装置和投影光学系统
    • US08210693B2
    • 2012-07-03
    • US12661500
    • 2010-03-18
    • Jun Nishikawa
    • Jun Nishikawa
    • G03B21/28
    • G03B21/28G02B13/16G02B17/08
    • A projection type image display apparatus includes: a light source; an illumination optical system that uniformly illuminates beams, which are emitted from the light source, on a surface of an image modulation element as a primary image plane; and a projection optical system that projects image information of the primary image plane modulated by the image modulation element on a screen as a secondary image plane in an enlarged manner. The projection optical system includes a first optical system having a positive refractive power and including a plurality of transmissive surfaces, and a second optical system having a positive refractive power and including a concave reflective surface. The first optical system has a first reflective surface disposed between any surfaces of the plurality of transmissive surfaces, and a second reflective surface disposed between the first optical system and second optical system.
    • 投影型图像显示装置包括:光源; 照明光学系统,其将从光源发射的光束均匀地照射在作为主像面的图像调制元件的表面上; 以及投影光学系统,以放大的方式将由图像调制元件调制的主像面的图像信息投影在屏幕上作为副图像平面。 投影光学系统包括具有正折光力并且包括多个透射表面的第一光学系统和具有正折光力并包括凹反射表面的第二光学系统。 第一光学系统具有设置在多个透射表面的任何表面之间的第一反射表面和设置在第一光学系统和第二光学系统之间的第二反射表面。
    • 6. 发明授权
    • Pattern forming method
    • 图案形成方法
    • US08147925B2
    • 2012-04-03
    • US11696746
    • 2007-04-05
    • Yoshinori SugiuraJun NishikawaRyoichi NakaokaChika KanadaAkito Harada
    • Yoshinori SugiuraJun NishikawaRyoichi NakaokaChika KanadaAkito Harada
    • B05D5/12
    • B05D5/06B05D3/207H01F1/28H01F7/0215H01F13/00
    • A pattern is formed by applying a coating composition containing magnetic particles to an article so that a coating film is formed, and a plurality of sheet form magnets are placed along the front surface of this coating film. Adjacent sheet form magnets are arranged in such a state that the magnetic poles on the front surface and the magnetic poles on the back surface are different between adjacent sheet form magnets, and side surfaces of the sheet form magnets contact each other. The coating composition contains a thermoplastic resin, magnetic particles with flaky form and a specific low boiling point solvent and a specific high boiling point solvent. A magnetic field is applied to the coating film by the sheet form magnets, so that the magnetic particles in the coating film are oriented by the magnetic field and the magnetic particles are oriented substantially parallel to the front surface of the coating film above the contact portions between the sheet form magnets. Light is reflected from the magnetic particles in the coating film so that a pattern is formed.
    • 通过将含有磁性颗粒的涂料组合物涂布到制品上形成涂膜,沿着该涂膜的前表面放置多个片状磁体,形成图案。 相邻的片状磁体以相邻的片状磁体之间的前表面上的磁极和背面的磁极与磁极之间不同的状态配置,片状磁体的侧面彼此接触。 涂料组合物含有热塑性树脂,片状磁性颗粒和特定的低沸点溶剂和特定的高沸点溶剂。 通过片状磁体对涂膜施加磁场,使得涂膜中的磁性颗粒通过磁场取向,并且磁性颗粒基本平行于涂层膜的接触部分上方的前表面 在片状磁体之间。 光从涂膜中的磁性颗粒反射,形成图案。
    • 7. 发明授权
    • Projection optical system and projection-type image display apparatus
    • 投影光学系统和投影型图像显示装置
    • US08071965B2
    • 2011-12-06
    • US12424845
    • 2009-04-16
    • Jun NishikawaToshihiro Sunaga
    • Jun NishikawaToshihiro Sunaga
    • G01G1/00
    • G03B21/10G02B17/08G02B17/0816G02B17/0852G03B21/28
    • There is a need for providing a projection optical system that is appropriate for maintaining high resolution with low distortion, miniaturizing a reflector, decreasing the number of reflectors, and decreasing the depth and the bottom (or top) of a display used for a rear projection television, for example. The projection optical system according to the invention enlarges and projects images from a primary image surface existing at a reducing side to a secondary image surface existing at an enlarging side. The projection optical system has a first optical system L11 and a second optical system L12. The first optical system L11 forms an intermediate image (position II) of the primary image surface. The second optical system L12 has a concave reflector AM1 that forms the secondary image surface resulting from the intermediate image. A light beam travels from the center of the primary image surface and to the center of the secondary image surface and crosses an optical axis. The light beam is reflected on the concave reflector, crosses the optical axis again, and reaches the secondary image surface.
    • 需要提供一种投影光学系统,其适合于维持低失真的高分辨率,反射器的小型化,减少反射器的数量,以及减小用于后投影的显示器的深度和底部(或顶部) 电视,例如。 根据本发明的投影光学系统将存在于还原侧的原图像表面的图像放大并投影到存在于放大侧的二次图像表面。 投影光学系统具有第一光学系统L11和第二光学系统L12。 第一光学系统L11形成主图像表面的中间图像(位置II)。 第二光学系统L12具有形成由中间图像产生的二次图像表面的凹面反射体AM1。 光束从主图像表面的中心移动到次级图像表面的中心并与光轴交叉。 光束在凹面反射体上反射,再次与光轴交叉,到达二次图像面。
    • 9. 发明申请
    • Projection optical system and projection-type image display apparatus
    • 投影光学系统和投影型图像显示装置
    • US20070184368A1
    • 2007-08-09
    • US10583607
    • 2005-10-21
    • Jun NishikawaToshihiro Sunaga
    • Jun NishikawaToshihiro Sunaga
    • G03C5/00
    • G03B21/10G02B17/08G02B17/0816G02B17/0852G03B21/28
    • There is a need for providing a projection optical system that is appropriate for maintaining high resolution with low distortion, miniaturizing a reflector, decreasing the number of reflectors, and decreasing the depth and the bottom (or top) of a display used for a rear projection television, for example. The projection optical system according to the invention enlarges and projects images from a primary image surface existing at a reducing side to a secondary image surface existing at an enlarging side. The projection optical system has a first optical system L11 and a second optical system L12. The first optical system L11 forms an intermediate image (position II) of the primary image surface. The second optical system L12 has a concave reflector AM1 that forms the secondary image surface resulting from the intermediate image. A light beam travels from the center of the primary image surface and to the center of the secondary image surface and crosses an optical axis. The light beam is reflected on the concave reflector, crosses the optical axis again, and reaches the secondary image surface.
    • 需要提供一种投影光学系统,其适合于维持低失真的高分辨率,反射器的小型化,减少反射器的数量,以及减小用于后投影的显示器的深度和底部(或顶部) 电视,例如。 根据本发明的投影光学系统将存在于还原侧的原图像表面的图像放大并投影到存在于放大侧的二次图像表面。 投影光学系统具有第一光学系统L11和第二光学系统L12。 第一光学系统L11形成主图像表面的中间图像(位置II)。 第二光学系统L12具有形成由中间图像产生的二次图像表面的凹面反射体AM 1。 光束从主图像表面的中心移动到次级图像表面的中心并与光轴交叉。 光束在凹面反射体上反射,再次与光轴交叉,到达二次图像面。