会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • MICROELECTRONIC SENSOR DEVICE WITH MAGNETIC FIELD GENERATOR AND CARRIER
    • 具有磁场发生器和载体的微电子传感器装置
    • US20100188076A1
    • 2010-07-29
    • US12667396
    • 2007-10-23
    • Josephus Arnoldus Henricus Maria KahlmanJeroen Veen
    • Josephus Arnoldus Henricus Maria KahlmanJeroen Veen
    • G01N27/72
    • G01R33/1269B01L3/502761B01L2200/0636B01L2400/043G01N21/552G01N27/745
    • The invention relates to a microelectronic sensor device for manipulating a sample in an exchangeable carrier (111), for example for optically detecting target particles (1) in a sample liquid that is provided in a sample chamber (2) of the carrier (111). The microelectronic sensor device comprises a number of n>1 magnetic field generators (141-143), e.g. electromagnetic coils, with which magnetic fields can be generated in a target region (110). A control unit (150) is provided that can determine and evaluate the mutual coupling or the self-inductance of the magnetic field generators and/or signals from magnetic field sensors attached to the carrier with respect to the presence and/or state of a carrier (111) in the target region (110). In this way, the control unit (150) can for example detect if the carrier (111) is correctly positioned in the sensor device and/or where a magnetically interactive substance (1, 120) is located.
    • 本发明涉及一种用于操纵可交换载体(111)中的样品的微电子传感器装置,例如用于光学检测设置在载体(111)的样品室(2)中的样品液体中的目标颗粒(1) 。 微电子传感器装置包括多个n≥1个磁场发生器(141-143),例如, 电磁线圈,可以在目标区域(110)中产生磁场。 提供控制单元(150),其可以相对于载体的存在和/或状态来确定和评估附接到载体的磁场传感器的磁场发生器和/或信号的相互耦合或自感 (111)在目标区域(110)中。 以这种方式,控制单元(150)可以例如检测载体(111)是否被正确地定位在传感器装置中和/或磁性交互物质(1,120)所在的位置。
    • 3. 发明申请
    • OXYGEN CONCENTRATION MEASUREMENT WITH GMR
    • 氧气浓度测量与GMR
    • US20110057651A1
    • 2011-03-10
    • US12990986
    • 2009-05-04
    • Haris DuricJosephus Arnoldus Henricus Maria KahlmanJeroen Veen
    • Haris DuricJosephus Arnoldus Henricus Maria KahlmanJeroen Veen
    • G01R33/02
    • G01N27/74G01R33/091
    • In an embodiment, an oxygen sensor comprises a giant magnetoresistance device (10), and a magnetic field generator (14, 14a, 14b) arranged to generate a magnetic field (12, 12a, 12b) overlapping the giant magnetoresistance device and an examination region (20). A component (Bx) of the magnetic field detected by the giant magnetoresistance device is dependent upon an oxygen concentration in the examination region. In an embodiment, a chip (40) includes one or more electrically conductive traces (14a, 14b) disposed on or in the chip and a giant magnetoresistance device (10) disposed on or in the chip such that electrical current flowing in the trace or traces generates a magnetic field (12a, 12b) that overlaps the magnetic field sensor, said magnetic field being perturbed (Bx) by ambient oxygen (24) such that a signal output by the magnetic field sensor indicates ambient oxygen concentration.
    • 在一个实施例中,氧传感器包括巨磁电阻装置(10)和布置成产生与巨磁电阻装置重叠的磁场(12,12a,12b)的磁场发生器(14,14a,14b)和检查区 (20)。 由巨磁电阻装置检测的磁场的分量(Bx)取决于检查区域中的氧浓度。 在一个实施例中,芯片(40)包括设置在芯片上或芯片中的一个或多个导电迹线(14a,14b)和设置在芯片上或芯片上的巨磁电阻器件(10),使得流过迹线或 轨迹产生与磁场传感器重叠的磁场(12a,12b),所述磁场被环境氧(24)扰动(Bx),使得由磁场传感器输出的信号表示环境氧浓度。
    • 4. 发明申请
    • MAGNETIC SENSOR DEVICE WITH ROBUST SIGNAL PROCESSING
    • 具有鲁棒信号处理的磁传感器装置
    • US20100060275A1
    • 2010-03-11
    • US12518897
    • 2007-12-14
    • Jeroen VeenTheodorus Petrus Henricus Gerardus JansenBart Michiel De BoerJosephus Arnoldus Henricus Maria Kahlman
    • Jeroen VeenTheodorus Petrus Henricus Gerardus JansenBart Michiel De BoerJosephus Arnoldus Henricus Maria Kahlman
    • G01R33/12
    • G01R33/093B82Y25/00G01R33/1269
    • The invention relates to a magnetic sensor device (100) comprising a magnetic field generator (1) driven with an excitation current of a first frequency (f1) and a magnetic sensor element (e.g. a GIVER sensor (2)) driven with a sensor current (I2) of a second frequency (f2) for measuring reaction fields (HB) generated by magnetized particles (3). In an associated evaluation unit (10), a reference component (uQ) of the measurement signal (uGMR) is separated that depends on the excitation current (I1) and the sensor current (I2) but not on the presence of magnetized particles (3). The reference component (uQ) may particularly be produced by a combination of the self-magnetization (H2) of the magnetic sensor element (2) and cross-talk related currents. The reference component (uQ) may be isolated based on its phase with respect to a particle-dependent component of the measurement signal (uGMR) or based on its scaling with one of the current frequencies. Monitoring of the reference component (uQ) reveals variations in operating conditions, for example in the sensor gain, that can be used to calibrate the measurement results.
    • 本发明涉及一种磁传感器装置(100),其包括用第一频率(f1)的激励电流驱动的磁场发生器(1)和由传感器电流驱动的磁传感器元件(例如GIVER传感器(2)) (I2),用于测量由磁化颗粒(3)产生的反应场(HB)的第二频率(f2)。 在相关联的评估单元(10)中,测量信号(uGMR)的参考分量(uQ)被分离,其取决于激励电流(I1)和传感器电流(I2),但不依赖于磁化颗粒(3 )。 参考分量(uQ)可以特别地通过磁传感器元件(2)的自磁化(H2)和串扰相关电流的组合来产生。 参考分量(uQ)可以基于其相对于测量信号(uGMR)的粒子相关分量的相位或者基于其与当前频率之一的比例来隔离。 参考组件(uQ)的监视显示了可用于校准测量结果的操作条件的变化,例如传感器增益。
    • 5. 发明申请
    • MAGNETIC SENSOR DEVICE WITH SUPPRESSION OF SPURIOUS SIGNAL COMPONENTS
    • 具有抑制SPUIOUS信号组件的磁传感器装置
    • US20100001722A1
    • 2010-01-07
    • US12518890
    • 2007-12-12
    • Josephus Arnoldus Henricus Maria KahlmanBart Michiel De BoerTheodorus Petrus Henricus Gerardus JansenJeroen Veen
    • Josephus Arnoldus Henricus Maria KahlmanBart Michiel De BoerTheodorus Petrus Henricus Gerardus JansenJeroen Veen
    • G01R33/02
    • G01R33/093B82Y25/00G01R33/1269
    • The invention relates to a magnetic sensor device for the determination of magnetized particles (3) which comprises a magnetic field generator (1, 1′)(e.g. a conductor wire) that is driven with an excitation current (I1) of a first frequency (f1), and a magnetic sensor element (2) (e.g. a GMR resistance), that is driven with a sensor current (I2) of a second frequency (f2) for generating measurement signals (UGMR). A preprocessed signal (uf) is then generated from the measurement signal (UGMR) that comprises a predetermined frequency (Δf), and an evaluation unit (10) separates from this preprocessed signal a spurious component that does not depend on the presence of magnetized particles (3) in the sample chamber. The spurious component (UQ) may particularly be caused by self-magnetization (H2) of the magnetic sensor element (2) in combination with parasitic (capacitive or inductive) cross-talk. Furthermore, an unknown, variable phase-shift (φSP) in the preprocessed signal (uf) may be determined by varying the ratio between the spurious component and a particle-dependent target component. This variation may for example be achieved if, in an optimization stage (OS), the excitation current (I1) is conducted through a bypass resistor (R, R′) and/or if an additional capacitor is introduced between the magnetic field generator and the magnetic sensor element. The determined phase shift can then be used to adjust the phase of a demodulation signal (udem) such that the spurious component is suppressed.
    • 本发明涉及一种用于确定磁化颗粒(3)的磁传感器装置,该磁化颗粒包括由第一频率的激励电流(I1)驱动的磁场发生器(1,1')(例如导线) f1)和由用于产生测量信号(UGMR)的第二频率(f2)的传感器电流(I2)驱动的磁传感器元件(2)(例如,GMR电阻)。 然后从包括预定频率(Deltaf)的测量信号(UGMR)生成预处理信号(uf),并且评估单元(10)从该预处理信号中分离出不依赖于磁化颗粒的存在的杂散分量 (3)。 杂散分量(UQ)可以特别地由磁传感器元件(2)与寄生(电容或电感)串扰的自磁化(H2)引起。 此外,预处理信号(uf)中的未知的可变相移(phiSP)可以通过改变杂散分量和粒子相关目标分量之间的比率来确定。 例如,如果在优化级(OS)中通过旁路电阻(R,R')传导励磁电流(I1)和/或如果在磁场发生器和 磁传感元件。 然后可以使用所确定的相移来调整解调信号(udem)的相位,使得抑制杂散分量。
    • 7. 发明授权
    • Oxygen concentration measurement with GMR
    • 用GMR进行氧浓度测量
    • US08542009B2
    • 2013-09-24
    • US12990986
    • 2009-05-04
    • Haris DuricJosephus Arnoldus Henricus Maria KahlmanJeroen Veen
    • Haris DuricJosephus Arnoldus Henricus Maria KahlmanJeroen Veen
    • G01R33/02G01R33/12
    • G01N27/74G01R33/091
    • In an embodiment, an oxygen sensor comprises a giant magnetoresistance device (10), and a magnetic field generator (14, 14a, 14b) arranged to generate a magnetic field (12, 12a, 12b) overlapping the giant magnetoresistance device and an examination region (20). A component (Bx) of the magnetic field detected by the giant magnetoresistance device is dependent upon an oxygen concentration in the examination region. In an embodiment, a chip (40) includes one or more electrically conductive traces (14a, 14b) disposed on or in the chip and a giant magnetoresistance device (10) disposed on or in the chip such that electrical current flowing in the trace or traces generates a magnetic field (12a, 12b) that overlaps the magnetic field sensor, said magnetic field being perturbed (Bx) by ambient oxygen (24) such that a signal output by the magnetic field sensor indicates ambient oxygen concentration.
    • 在一个实施例中,氧传感器包括巨磁电阻装置(10)和布置成产生与巨磁电阻装置重叠的磁场(12,12a,12b)的磁场发生器(14,14a,14b)和检查区 (20)。 由巨磁电阻装置检测的磁场的分量(Bx)取决于检查区域中的氧浓度。 在一个实施例中,芯片(40)包括设置在芯片上或芯片中的一个或多个导电迹线(14a,14b)和设置在芯片上或芯片上的巨磁电阻器件(10),使得流过迹线或 轨迹产生与磁场传感器重叠的磁场(12a,12b),所述磁场被环境氧(24)扰动(Bx),使得由磁场传感器输出的信号表示环境氧浓度。