会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of forming a low cost DRAM cell with self aligned twin tub CMOS
devices and a pillar shaped capacitor
    • 用自对准双槽CMOS器件和柱状电容器形成低成本DRAM单元的方法
    • US5792680A
    • 1998-08-11
    • US756129
    • 1996-11-25
    • Janmye SungChih-Yuan LuHoward Clayton Kirsch
    • Janmye SungChih-Yuan LuHoward Clayton Kirsch
    • H01L21/8239H01L21/8242H01L27/108H01L21/8238
    • H01L27/10852H01L27/1052H01L27/10817
    • The invention is a method of forming a reduced cost DRAM. The process has two embodiments for forming twin wells and two embodiments for forming pillar shaped capacitor electrodes. The twin well embodiments are simple low cost processes. The embodiments for forming the electrode pillars begin by forming a tungsten silicide conductive layer on a first planarization layer. For the first embodiment, the pillars are formed using a photolithography mask with a pattern of spaced transparent areas. The dimensions of the spaced transparent areas and distances between the spaced transparent areas are smaller that the resolution of the lithographic tool. Spaced oxide islands are formed with the mask and are used as an etch mask to form spaced pillars from the conductive layer. This first embodiment for fabricating the multiple pillar capacitor forms pillars of a smaller dimension than the resolution of the photolithography tool. The second embodiment for forming the pillars involves using small titanium silicide islands as an etch mask to define the pillars.
    • 本发明是一种形成降低成本的DRAM的方法。 该方法具有用于形成双阱的两个实施例和用于形成柱状电容器电极的两个实施例。 双阱实施例是简单的低成本处理。 用于形成电极柱的实施例开始于在第一平坦化层上形成硅化钨导电层。 对于第一实施例,使用具有间隔透明区域的图案的光刻掩模形成柱。 间隔透明区域的尺寸和间隔开的透明区域之间的距离小于光刻工具的分辨率。 用掩模形成间隔氧化物岛,并用作蚀刻掩模以与导电层形成间隔的柱。 用于制造多支柱电容器的第一实施例形成比光刻工具的分辨率小的尺寸的柱。 用于形成柱的第二实施例涉及使用小的硅化钛岛作为蚀刻掩模来限定柱。
    • 4. 发明授权
    • Method of fabricating a buried reservoir capacitor structure for
high-density dynamic random access memory (DRAM) circuits
    • 制造用于高密度动态随机存取存储器(DRAM)电路的埋藏式电容器结构的方法
    • US5943581A
    • 1999-08-24
    • US964808
    • 1997-11-05
    • Chih-Yuan LuJanmye Sung
    • Chih-Yuan LuJanmye Sung
    • H01L21/8242H01L27/108H01L21/70
    • H01L27/10858H01L27/10832
    • An improved DRAM cell using a novel buried reservoir capacitor is achieved. The method forms an array of N.sup.+ doped regions in a substrate. P-wells are formed in an epitaxy layer on the substrate. A field oxide (FOX) is formed surrounding the device areas aligned over the N.sup.+ regions. Holes are etched in the epi layer to the N.sup.+ regions, and a selective wet etch removes the N.sup.+ doped regions to form cavities. A thin dielectric layer is deposited on the cavity walls, and an N.sup.+ polysilicon layer is deposited and polished back to form the buried reservoir capacitors. The N.sup.+ polysilicon in the holes forms the capacitor node contacts for the FETs in the device areas. The array of DRAM cells is completed by growing a gate oxide, depositing and patterning a first polycide layer to form FET gate electrodes on the device areas over the capacitors, thereby providing increased capacitance while reducing the cell area. Lightly doped source/drain (LDD) areas, sidewall spacers and heavily doped source/drain contacts are formed for the FETs. A node strap is formed between one source/drain contact and the node contact to make good electrical contact. An insulating layer is deposited having bit line contact holes, and a second polycide layer is patterned to form the bit lines for the DRAM.
    • 实现了使用新颖的埋藏式电容器的改进的DRAM单元。 该方法在衬底中形成N +掺杂区域的阵列。 在衬底上的外延层中形成P阱。 围绕在N +区域上排列的器件区域周围形成场氧化物(FOX)。 将孔在外延层中蚀刻到N +区,并且选择性湿蚀刻去除N +掺杂区以形成空穴。 在空腔壁上沉积薄的电介质层,并且沉积并抛光N +多晶硅层以形成埋藏的储存电容器。 孔中的N +多晶硅形成器件区域中的FET的电容器节点接触。 通过生长栅极氧化物,沉积和图案化第一多晶硅层以在电容器上的器件区域上形成FET栅电极来完成DRAM单元的阵列,从而在减小电池面积的同时提供增加的电容。 形成用于FET的轻掺杂源极/漏极(LDD)区域,侧壁间隔物和重掺杂源极/漏极接触。 节点带形成在一个源极/漏极接触点和节点接触点之间以形成良好的电接触。 沉积具有位线接触孔的绝缘层,并且图案化第二多晶硅化物层以形成用于DRAM的位线。
    • 8. 发明授权
    • Capacitor over bit line structure using a straight bit line shape
    • 使用直线形状的位线结构电容器
    • US6137130A
    • 2000-10-24
    • US455357
    • 1999-12-06
    • Janmye Sung
    • Janmye Sung
    • H01L21/8242H01L27/108
    • H01L27/10852
    • A method of creating a capacitor over bit line structure, used for high density, DRAM designs, has been developed. The process consists of creating a straight bit line shape, connected to an underlying polysilicon contact plug structure, which in turn contacts an underlying source and drain region. A storage node contact hole is opened through insulator layers and through the straight bit line shape. After passivation of the storage node contact hole with silicon nitride spacers, a storage node structure is formed on an overlying insulator layer, as well as in the storage node contact hole, overlying and contacting another polysilicon contact plug.
    • 已经开发了用于高密度DRAM设计的位线结构上产生电容器的方法。 该过程包括产生直的位线形状,连接到下面的多晶硅接触插塞结构,其又接触下面的源极和漏极区域。 存储节点接触孔通过绝缘体层和直的位线形状打开。 在用氮化硅间隔物钝化存储节点接触孔之后,在覆盖的绝缘体层以及存储节点接触孔中形成存储节点结构,覆盖并接触另一个多晶硅接触插塞。
    • 9. 发明授权
    • Method for fabricating capacitor-over-bit-line dynamic random access
memory (DRAM) using self-aligned contact etching technology
    • 使用自对准接触蚀刻技术制造电容器 - 位线动态随机存取存储器(DRAM)的方法
    • US6136643A
    • 2000-10-24
    • US248727
    • 1999-02-11
    • Erik S. JengChun-Yao ChenIng-Ruey LiawJanmye Sung
    • Erik S. JengChun-Yao ChenIng-Ruey LiawJanmye Sung
    • H01L21/02H01L21/8242
    • H01L27/10888H01L28/91
    • A method for making capacitor-over-bit line (COB) DRAM using a self-aligned contact etching technology is achieved. After forming FET gate electrodes, sidewall spacers are formed from a first Si.sub.3 N.sub.4 etch-stop layer, while a portion of the Si.sub.3 N.sub.4 is retained as an etch-stop layer on the source/drain areas. Self-aligned contact openings are etched in a first oxide layer to the source/drain areas, and polysilicon landing plugs are formed in all the self-aligned openings. A second oxide layer is deposited and contact holes are etched to the landing plugs for bit lines. A polycide layer having a cap layer is deposited and patterned to form bit lines. A third Si.sub.3 N.sub.4 etch-stop layer is conformally deposited over the bit lines and patterned to form openings over the landing plugs for the capacitor node contacts while forming Si.sub.3 N.sub.4 sidewall spacers on the bit lines exposed in the openings. A third oxide layer is deposited, and openings having relaxed alignment tolerances, can be etched to the capacitor node contacts because the underlying third etch-stop layer prevents overetching. A conducting layer is deposited and etched back to form bottom electrodes in the openings, and the third oxide layer is removed, while the Si.sub.3 N.sub.4 etch-stop layers prevents over-etching. An interelectrode dielectric layer is deposited, and capacitor top electrodes are formed.
    • 实现了使用自对准接触蚀刻技术制造电容器对位线(COB)DRAM的方法。 在形成FET栅电极之后,侧壁间隔物由第一Si 3 N 4蚀刻停止层形成,而一部分Si 3 N 4作为蚀刻停止层保留在源/漏区上。 自对准的接触开口在第一氧化物层中蚀刻到源极/漏极区域,并且在所有自对准开口中形成多晶硅着色塞。 沉积第二氧化物层,并将接触孔蚀刻到位线的着陆塞。 沉积具有盖层的多晶硅化物层并构图以形成位线。 第三个Si 3 N 4蚀刻停止层被保形地沉积在位线上并被图案化以在用于电容器节点接触的着陆塞上形成开口,同时在开口中暴露的位线上形成Si 3 N 4侧壁间隔物。 沉积第三氧化物层,并且具有松弛的取向公差的开口可被蚀刻到电容器节点接点,因为下面的第三蚀刻停止层防止过蚀刻。 导电层被沉积并回蚀刻以在开口中形成底部电极,并且去除第三氧化物层,而Si 3 N 4蚀刻停止层防止过蚀刻。 沉积电极间电介质层,形成电容器顶部电极。