会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Gate stacks
    • 门堆叠
    • US07378712B2
    • 2008-05-27
    • US11463039
    • 2006-08-08
    • Dale W. MartinSteven M. ShankMichael C. TriplettDeborah A. Tucker
    • Dale W. MartinSteven M. ShankMichael C. TriplettDeborah A. Tucker
    • H01L29/76H01L29/94H01L31/062H01L31/113H01L31/119
    • H01L21/28247H01L21/28035H01L29/4916Y10S257/90
    • A gate stack structure. The structure includes (a) a semiconductor region and (b) a gate stack on top of the semiconductor region. The gate stack includes (i) a gate dielectric region on top of the semiconductor region, (ii) a first gate polysilicon region on top of the gate dielectric region, and (iii) a second gate polysilicon region on top of the first gate polysilicon region and doped with a type of dopants. The structure further includes (c) a diffusion barrier region and a spacer oxide region on a side wall of the gate stack. The diffusion barrier region (i) is sandwiched between the gate stack and the spacer oxide region and (ii) is in direct physical contact with both the first and second gate polysilicon regions, and (iii) comprises a material having a property of preventing a diffusion of oxygen-containing materials through the diffusion barrier region.
    • 门堆栈结构。 该结构包括(a)半导体区域和(b)在半导体区域的顶部上的栅极堆叠。 栅极堆叠包括(i)在半导体区域的顶部上的栅极电介质区域,(ii)位于栅极电介质区域顶部的第一栅极多晶硅区域,以及(iii)位于第一栅极多晶硅顶部的第二栅极多晶硅区域 并掺杂一种掺杂剂。 该结构还包括(c)栅叠层的侧壁上的扩散阻挡区和间隔氧化物区。 扩散阻挡区域(i)夹在栅极叠层和间隔氧化物区域之间,(ii)与第一和第二栅极多晶硅区域直接物理接触,并且(iii)包括具有防止 含氧材料通过扩散阻挡区扩散。
    • 5. 发明授权
    • Method for providing multiple gate oxide thicknesses on the same wafer
    • 在同一晶片上提供多个栅极氧化物厚度的方法
    • US5926708A
    • 1999-07-20
    • US859588
    • 1997-05-20
    • Dale W. Martin
    • Dale W. Martin
    • H01L21/8234H01L21/8242
    • H01L21/823462
    • The present invention is directed to a method of manufacturing an integrated circuit with two or more gate oxide thicknesses on the same wafer. The method includes the steps of growing a first oxide layer on a substrate, depositing a first polysilicon layer over the first oxide layer, applying a block mask, etching the first polysilicon layer, stripping the block mask, stripping the first oxide layer from the areas opened by the block mask, growing a second oxide layer, depositing a second polysilicon layer, and polishing the second polysilicon layer to remove the second polysilicon layer from everywhere except the areas opened by the block mask. If desired, a polish stop layer may be deposited after depositing the first polysilicon layer. Threshold implants may also be made after the block mask is stripped. Finally, polysilicon shapes may be added to the boundary areas opened by the block mask to help eliminate foreign material problems.
    • 本发明涉及在同一晶片上制造具有两个或多个栅极氧化物厚度的集成电路的方法。 该方法包括以下步骤:在衬底上生长第一氧化物层,在第一氧化物层上沉积第一多晶硅层,施加阻挡掩模,蚀刻第一多晶硅层,剥离阻挡掩模,从区域剥离第一氧化物层 通过块掩模打开,生长第二氧化物层,沉积第二多晶硅层,以及抛光第二多晶硅层以除去由阻挡掩模打开的区域以外的任何地方的第二多晶硅层。 如果需要,可以在沉积第一多晶硅层之后沉积抛光停止层。 剥离块掩模后也可以进行阈值植入。 最后,可以将多晶硅形状添加到通过阻挡掩模打开的边界区域,以帮助消除异物问题。
    • 7. 发明授权
    • Gate stacks
    • 门堆叠
    • US07157341B2
    • 2007-01-02
    • US10711742
    • 2004-10-01
    • Dale W. MartinSteven M. ShankMichael C. TriplettDeborah A. Tucker
    • Dale W. MartinSteven M. ShankMichael C. TriplettDeborah A. Tucker
    • H01L21/336H01L21/8238
    • H01L21/28247H01L21/28035H01L29/4916Y10S257/90
    • A structure and fabrication method for a gate stack used to define source/drain regions in a semiconductor substrate. The method comprises (a) forming a gate dielectric layer on top of the substrate, (b) forming a gate polysilicon layer on top of the gate dielectric layer, (c) implanting n-type dopants in a top layer of the gate polysilicon layer, (d) etching away portions of the gate polysilicon layer and the gate dielectric layer so as to form a gate stack on the substrate, and (e) thermally oxidizing side walls of the gate stack with the presence of a nitrogen-carrying gas. As a result, a diffusion barrier layer is formed at the same depth in the polysilicon material of the gate stack regardless of the doping concentration. Therefore, the n-type doped region of the gate stack has the same width as that of the undoped region of the gate stack.
    • 用于限定半导体衬底中的源极/漏极区域的栅堆叠的结构和制造方法。 该方法包括:(a)在衬底的顶部形成栅介质层,(b)在栅极介电层的顶部形成栅极多晶硅层,(c)在栅极多晶硅层的顶层中注入n型掺杂剂 ,(d)蚀刻掉栅极多晶硅层和栅极电介质层的部分,以在衬底上形成栅极堆叠,以及(e)在存在氮气的气体下热氧化栅极堆叠的侧壁。 结果,无论掺杂浓度如何,在栅叠层的多晶硅材料中,在相同的深度处形成扩散阻挡层。 因此,栅极堆叠的n型掺杂区域具有与栅极堆叠的未掺杂区域相同的宽度。
    • 8. 发明授权
    • Self-aligned non-volatile random access memory cell and process to make the same
    • 自对准非易失性随机存取存储器单元和过程相同
    • US06525371B2
    • 2003-02-25
    • US09401622
    • 1999-09-22
    • Jeffrey B. JohnsonChung H. LamDana LeeDale W. MartinJed H. Rankin
    • Jeffrey B. JohnsonChung H. LamDana LeeDale W. MartinJed H. Rankin
    • H01L29788
    • H01L27/11521H01L27/115H01L29/42324
    • A self aligned method of forming a semiconductor memory array of floating gate memory cells in a semiconductor substrate has a plurality of spaced apart isolation regions on the substrate substantially parallel to one another. An active region is between each pair of adjacent isolation regions. The active and isolation regions are formed in parallel and in the column direction. In the row direction, strips of spaced apart silicon nitride are formed. A source line plug is formed between adjacent pairs of silicon nitride and is in contact with a first region in the active regions, and the isolation regions. The strips of silicon nitride are removed and isotropically etched. In addition, the materials beneath the silicon nitride are also isotropically etched. Polysilicon spacers are then formed in the row direction parallel to the source line plug and adjacent to the floating gates to form connected control gates. A second region is formed between adjacent, spaced apart, control gates. A bit line is formed in the bit line direction contacting the second region in the space between the control gates.
    • 在半导体衬底中形成浮动栅极存储单元的半导体存储器阵列的自对准方法在基板上具有基本上彼此平行的多个间隔开的隔离区域。 有源区域位于每对相邻隔离区域之间。 活性隔离区域和平行区域形成为平行且在列方向。 在行方向上,形成间隔开的氮化硅的条。 源极线插塞形成在相邻的氮化硅对之间并且与有源区域中的第一区域以及隔离区域接触。 去除氮化硅条并进行各向同性蚀刻。 此外,氮化硅下方的材料也被各向同性地蚀刻。 然后在平行于源极线插塞并与浮动栅极相邻的行方向上形成多晶硅间隔物,以形成连接的控制栅极。 第二区域形成在相邻的间隔开的控制门之间。 在与控制栅极之间的空间中的第二区域接触的位线方向上形成位线。