会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Sputter deposited barrier layers
    • 溅射沉积的阻挡层
    • US06271592B1
    • 2001-08-07
    • US09370088
    • 1999-08-06
    • Edwin KimMichael NamChris ChaGongda YaoSophia LeeFernand DorleansGene Y. KoharaJianming Fu
    • Edwin KimMichael NamChris ChaGongda YaoSophia LeeFernand DorleansGene Y. KoharaJianming Fu
    • H01L2348
    • H01L21/76856C23C14/0641C23C14/0676C23C14/083C23C14/185C23C14/32H01L21/28518H01L21/2855H01L21/76843H01L21/76846H01L21/76855
    • The present disclosure pertains to our discovery that depositing various film layers in a particular order using a combination of Ion Metal Plasma (IMP) and traditional sputter deposition techniques with specific process conditions results in a barrier layer structure which provides excellent barrier properties and allows for metal/conductor filling of contact sizes down to 0.25 micron and smaller without junction spiking. Specifically, the film layers are deposited on a substrate in the following order: (a) a first layer of a barrier metal (M), deposited by IMP sputter deposition; (b) a second layer of an oxygen-stuffed barrier metal (MOx), an oxygen-stuffed nitride of a barrier metal (MNOx), or a combination thereof; (c) a third layer of a nitride of a barrier metal (MNx), deposited by IMP sputter deposition of the barrier metal in the presence of nitrogen; and (d) a fourth, wetting layer of a barrier metal, deposited by traditional sputter deposition. The first layer of barrier metal can optionally be annealed to form a silicide of the barrier metal (MSi2) in order to reduce contact resistance and interdiffusion of the silicon and metal/conductor which may result form overetching of contacts. An additional layer of barrier metal can optionally be deposited between the second oxygen-stuffed layer and the third barrier metal nitride layer in order to further improve the barrier properties of the barrier layer structure and to provide for better metal/conductor fill. A thin layer of metal/conductor may be deposited on the walls of the contact via by “long throw” sputter deposition prior to filling the via with metal/conductor in order to provide more uniform fill. The optimum process conditions for sputter deposition of the barrier layer structure of the invention are disclosed herein.
    • 本公开涉及我们的发现,使用离子金属等离子体(IMP)和具有特定工艺条件的传统溅射沉积技术的组合以特定顺序沉积各种膜层导致阻挡层结构,其提供优异的阻隔性能并允许金属 /导体填充接触尺寸低至0.25微米及更小,无接头尖峰。 具体地,以下列顺序将膜层沉积在衬底上:(a)通过IMP溅射沉积沉积的第一层阻挡金属(M); (b)第二层氧填充阻隔金属(MOx),阻挡金属(MNOx)的氧气氮化物或其组合; (c)通过在氮气存在下通过IMP溅射沉积阻挡金属而沉积的阻挡金属(MNx)的氮化物的第三层; 和(d)通过传统溅射沉积沉积的阻挡金属的第四润湿层。 阻挡金属的第一层可以任意地退火以形成阻挡金属(MSi2)的硅化物,以便降低可能导致触点过蚀刻的硅和金属/导体的接触电阻和相互扩散。 可以可选地在第二氧填充层和第三阻挡金属氮化物层之间沉积另外的阻挡金属层,以便进一步改善阻挡层结构的阻挡性能并提供更好的金属/导体填充。 在通过金属/导体填充通孔之前,可以通过“长抛”溅射沉积将薄的金属/导体层沉积在接触孔的壁上,以便提供更均匀的填充。 本文公开了本发明的阻挡层结构的溅射沉积的最佳工艺条件。
    • 3. 发明授权
    • Oxygen enhancement of ion metal plasma (IMP) sputter deposited barrier
layers
    • 离子金属等离子体(IMP)的氧增强溅射沉积的阻挡层
    • US5985759A
    • 1999-11-16
    • US28946
    • 1998-02-24
    • Edwin KimMichael NamChris ChaGongda YaoSophia LeeFernand DorleansGene Y. KoharaJianming Fu
    • Edwin KimMichael NamChris ChaGongda YaoSophia LeeFernand DorleansGene Y. KoharaJianming Fu
    • C23C14/06C23C14/08C23C14/18C23C14/32H01L21/285H01L21/768H01L21/4763
    • H01L21/76856C23C14/0641C23C14/0676C23C14/083C23C14/185C23C14/32H01L21/2855H01L21/76843H01L21/76846H01L21/28518H01L21/76855
    • The present disclosure pertains to our discovery that depositing various film layers in a particular order using a combination of Ion Metal Plasma (IMP) and traditional sputter deposition techniques with specific process conditions results in a barrier layer structure which provides excellent barrier properties and allows for metal/conductor filling of contact sizes down to 0.25 micron and smaller without junction spiking. Specifically, the film layers are deposited on a substrate in the following order: (a) a first layer of a barrier metal (M), deposited by IMP sputter deposition; (b) a second layer of an oxygen-stuffed barrier metal (MOx), an oxygen-stuffed nitride of a barrier metal (MNOx), or a combination thereof; (c) a third layer of a nitride of a barrier metal (MN.sub.x), deposited by IMP sputter deposition of the barrier metal in the presence of nitrogen; and (d) a fourth, wetting layer of a barrier metal, deposited by traditional sputter deposition. The first layer of barrier metal can optionally be annealed to form a silicide of the barrier metal (MSi.sub.2) in order to reduce contact resistance and interdiffusion of the silicon and metal/conductor which may result form overetching of contacts. An additional layer of barrier metal can optionally be deposited between the second oxygen-stuffed layer and the third barrier metal nitride layer in order to further improve the barrier properties of the barrier layer structure and to provide for better metal/conductor fill. A thin layer of metal/conductor may be deposited on the walls of the contact via by "long throw" sputter deposition prior to filling the via with metal/conductor in order to provide more uniform fill. The optimum process conditions for sputter deposition of the barrier layer structure of the invention are disclosed herein.
    • 本公开涉及我们的发现,使用离子金属等离子体(IMP)和具有特定工艺条件的传统溅射沉积技术的组合以特定顺序沉积各种膜层导致阻挡层结构,其提供优异的阻隔性能并允许金属 /导体填充接触尺寸低至0.25微米及更小,无接头尖峰。 具体地,以下列顺序将膜层沉积在衬底上:(a)通过IMP溅射沉积沉积的第一层阻挡金属(M); (b)第二层氧填充阻隔金属(MOx),阻挡金属(MNOx)的氧气氮化物或其组合; (c)通过在氮气存在下通过IMP溅射沉积阻挡金属而沉积的阻挡金属(MNx)的氮化物的第三层; 和(d)通过传统溅射沉积沉积的阻挡金属的第四润湿层。 阻挡金属的第一层可以任意地退火以形成阻挡金属(MSi2)的硅化物,以便降低可能导致触点过蚀刻的硅和金属/导体的接触电阻和相互扩散。 可以可选地在第二氧填充层和第三阻挡金属氮化物层之间沉积另外的阻挡金属层,以便进一步改善阻挡层结构的阻挡性能并提供更好的金属/导体填充。 在通过金属/导体填充通孔之前,可以通过“长抛”溅射沉积将薄的金属/导体层沉积在接触孔的壁上,以便提供更均匀的填充。 本文公开了本发明的阻挡层结构的溅射沉积的最佳工艺条件。
    • 4. 发明授权
    • Structure for reducing junction spiking through a wall surface of an overetched contact via
    • US06448657B1
    • 2002-09-10
    • US09692911
    • 2000-10-19
    • Fernand Dorleans
    • Fernand Dorleans
    • H01L2941
    • H01L21/76843H01L21/2855H01L21/76805H01L21/76831H01L21/76876H01L21/76877H01L23/485H01L2924/0002H01L2924/00
    • The present invention pertains to a semiconductor device microstructure, and to a method of forming that microstructure, which reduces or prevents junction spiking and to a method of forming that microstructure. In particular, a semiconductor contact microstructure comprises a feature which includes a silicon base and at least one sidewall extending upward from the silicon base. The sidewall includes a silicon portion in contact with the silicon base, where the height of the silicon portion of the sidewall above the silicon base is typically less than about 0.5 &mgr;m. The sidewall also includes at least one portion which comprises a first dielectric material which is in contact with (and typically extends upward from) the silicon portion of the sidewall. Overlying at least the silicon portion of the sidewall is a layer of a second dielectric material, preferably silicon oxide. Typically, a diffusion barrier layer overlies the silicon base, the layer of second dielectric material, and at least part of the sidewall portion which is comprised of the first dielectric material. The method comprises the steps of: a) providing a semiconductor device feature which includes a silicon base and at least one sidewall extending upward from the silicon base, where the sidewall includes at least one silicon portion in contact with the silicon base, and another portion comprising a first dielectric material which is in contact with the silicon portion of the sidewall; and b) creating a layer of a second dielectric material, preferably silicon oxide, over the at least one silicon sidewall portion. The method may include additional steps: c) sputter etching to remove dielectric material from the surface of the silicon base; and d) applying a diffusion barrier material over the silicon base, the layer of second dielectric material, and at least a portion of the sidewall comprising the first dielectric material. Typically, both the first and second dielectric materials are silicon oxide.