会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • STRUCTURE AND METHOD TO FORM MULTILAYER EMBEDDED STRESSORS
    • 形成多层嵌入式应力的结构和方法
    • US20100059764A1
    • 2010-03-11
    • US12618152
    • 2009-11-13
    • Zhijiong LuoRicky S. AmosNivo RovedoHenry K. Utomo
    • Zhijiong LuoRicky S. AmosNivo RovedoHenry K. Utomo
    • H01L29/78H01L29/24
    • H01L29/7848H01L21/26513H01L21/823807H01L21/823814H01L29/1083H01L29/165H01L29/6656H01L29/66636
    • A multilayer embedded stressor having a graded dopant profile for use in a semiconductor structure for inducing strain on a device channel region is provided. The inventive multilayer stressor is formed within areas of a semiconductor structure in which source/drain regions are typically located. The inventive multilayer stressor includes a first conformal epi semiconductor layer that is undoped or lightly doped and a second epi semiconductor layer that is highly dopant relative to the first epi semiconductor layer. The first and second epi semiconductor layers each have the same lattice constant, which is different from that of the substrate they are embedded in. The structure including the inventive multilayer embedded stressor achieves a good balance between stress proximity and short channel effects, and even eliminates or substantially reduces any possible defects that are typically generated during formation of the deep source/drain regions.
    • 提供了具有用于在器件沟道区域上诱发应变的半导体结构中的渐变掺杂物分布的多层嵌入式应力器。 本发明的多层应力器形成在源极/漏极区域通常位于其中的半导体结构的区域内。 本发明的多层应力器包括未掺杂或轻掺杂的第一共形外延半导体层和相对于第一外延半导体层高度掺杂的第二外延半导体层。 第一和第二外延半导体层各自具有相同的晶格常数,其不同于嵌入其中的衬底。包括本发明的多层嵌入式应力器的结构在应力接近和短沟道效应之间实现良好的平衡,甚至消除 或基本上减少在深源/漏区形成期间通常产生的任何可能的缺陷。
    • 7. 发明授权
    • Structure and method to form multilayer embedded stressors
    • 多层嵌入式应激物的结构和方法
    • US07618866B2
    • 2009-11-17
    • US11423227
    • 2006-06-09
    • Zhijiong LuoRicky S. AmosNivo RovedoHenry K. Utomo
    • Zhijiong LuoRicky S. AmosNivo RovedoHenry K. Utomo
    • H01L21/336
    • H01L29/7848H01L21/26513H01L21/823807H01L21/823814H01L29/1083H01L29/165H01L29/6656H01L29/66636
    • A multilayer embedded stressor having a graded dopant profile for use in a semiconductor structure for inducing strain on a device channel region is provided. The inventive multilayer stressor is formed within areas of a semiconductor structure in which source/drain regions are typically located. The inventive multilayer stressor includes a first conformal epi semiconductor layer that is undoped or lightly doped and a second epi semiconductor layer that is highly dopant relative to the first epi semiconductor layer. The first and second epi semiconductor layers each have the same lattice constant, which is different from that of the substrate they are embedded in. The structure including the inventive multilayer embedded stressor achieves a good balance between stress proximity and short channel effects, and even eliminates or substantially reduces any possible defects that are typically generated during formation of the deep source/drain regions.
    • 提供了具有用于在器件沟道区域上诱发应变的半导体结构中的渐变掺杂物分布的多层嵌入式应力器。 本发明的多层应力器形成在源极/漏极区域通常位于其中的半导体结构的区域内。 本发明的多层应力器包括未掺杂或轻掺杂的第一共形外延半导体层和相对于第一外延半导体层高度掺杂的第二外延半导体层。 第一和第二外延半导体层各自具有相同的晶格常数,其不同于嵌入其中的衬底。包括本发明的多层嵌入式应力器的结构在应力接近和短沟道效应之间实现良好的平衡,甚至消除 或基本上减少在深源/漏区形成期间通常产生的任何可能的缺陷。
    • 8. 发明授权
    • Method of forming substantially L-shaped silicide contact for a semiconductor device
    • 形成用于半导体器件的基本上L形硅化物接触的方法
    • US07442619B2
    • 2008-10-28
    • US11383965
    • 2006-05-18
    • Zhijiong LuoHuilong ZhuYung Fu ChongHung Y. NgKern RimNivo Rovedo
    • Zhijiong LuoHuilong ZhuYung Fu ChongHung Y. NgKern RimNivo Rovedo
    • H01L21/283H01L23/482
    • H01L21/823814H01L21/823871H01L21/823878H01L29/665H01L29/6656H01L29/7833H01L2924/0002H01L2924/00
    • A method of manufacturing a semiconductor device having a substantially L-shaped silicide element forming a contact is disclosed. The substantially L-shaped silicide element, inter alia, reduces contact resistance and may allow increased density of CMOS circuits. In one embodiment, the substantially L-shaped silicide element includes a base member and an extended member, wherein the base member extends at least partially into a shallow trench isolation (STI) region such that a substantially horizontal surface of the base member directly contacts a substantially horizontal surface of the STI region; and a contact contacting the substantially L-shaped silicide element. The contact may include a notch region for mating with the base member and a portion of the extended member, which increases the silicide-to-contact area and reduces contact resistance. Substantially L-shaped silicide element may be formed about a source/drain region, which increases the silicon-to-silicide area, and reduces crowding and contact resistance.
    • 公开了一种制造具有形成接触的大致L形硅化物元件的半导体器件的方法。 基本上L形的硅化物元件尤其降低了接触电阻并且可以允许增加的CMOS电路的密度。 在一个实施例中,基本上L形的硅化物元件包括基底构件和延伸构件,其中基底构件至少部分地延伸到浅沟槽隔离(STI)区域中,使得基底构件的基本水平的表面直接接触 STI区域的基本水平的表面; 以及接触基本上L形的硅化物元件的接触。 触点可以包括用于与基底构件和延伸构件的一部分配合的切口区域,这增加了硅化物与接触面积并降低了接触电阻。 可以围绕源极/漏极区域形成基本上L形的硅化物元素,这增加了硅 - 硅化物面积,并且减少了拥挤和接触电阻。