会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for characterizing shear wave formation anisotropy
    • 表征剪切波形成各向异性的方法
    • US07310285B2
    • 2007-12-18
    • US11196907
    • 2005-08-04
    • J. Adam DonaldTom R. BrattonJohn Walsh
    • J. Adam DonaldTom R. BrattonJohn Walsh
    • G01S15/00G01V1/00
    • G01V1/50G01V1/284G01V2210/626
    • A method of characterizing shear wave anisotropy in a formation includes obtaining crossed-dipole waveforms from a borehole penetrating the formation over a range of depths and frequencies, determining far-field slowness in a fast-shear and slow-shear direction using a low-frequency portion of the crossed-dipole waveforms, and determining near-wellbore slowness in the fast-shear and slow-shear directions using a high-frequency portion of the crossed-dipole waveforms. The method also includes marking a selected depth of the formation as having intrinsic anisotropy if at the selected depth the far-field slowness in the fast-shear direction is less than the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is less than the near-wellbore slowness in the slow-shear direction. The selected depth is marked as having stress-induced anisotropy if the far-field slowness in the fast-shear direction is less than the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is greater than the near-wellbore slowness in the slow-shear direction.
    • 表征地层中剪切波各向异性的方法包括从深度和频率范围穿透地层的钻孔获得交叉偶极子波形,使用低频确定快剪切和慢剪切方向的远场慢度 交叉偶极子波形的一部分,并且使用交叉偶极子波形的高频部分确定快剪切和慢剪切方向的近井筒慢度。 该方法还包括将所选地层的深度标记为具有固有的各向异性,如果在所选择的深度处,快剪切方向的远场慢度小于慢剪切方向的远场慢度和近井筒 快剪切方向的缓慢小于慢剪切方向的近井筒慢度。 如果快剪切方向的远场慢度小于慢剪切方向的远场慢度,则选择的深度被标记为具有应力诱导的各向异性,并且快剪切方向的近井筒慢度是 大于慢剪切方向的近井眼缓慢。
    • 2. 发明授权
    • Method for logging and determining wellbore diameter by processing of progressive subsurface electromagnetic resistivity measurements
    • 通过处理渐进地下电磁阻测量记录和确定井筒直径的方法
    • US06417667B1
    • 2002-07-09
    • US09695198
    • 2000-10-24
    • Tom R. Bratton
    • Tom R. Bratton
    • G01V330
    • G01V3/30E21B47/08
    • A method is disclosed for determining a diameter of a wellbore. The method includes inducing an electromagnetic field in the wellbore and a formation surrounding the wellbore from a first location along the wellbore. At a first time, a phase is measured, with respect to the field at the first location, of a signal induced by the electromagnetic field at a second and at a third location axially spaced apart from the first location and from each other. The measuring is repeated at a second time, and a resistivity of the formation, and the wellbore diameter at the first time and at the second time are determined from the measurements of phase made at the first and at the second times. Any ambiguity in the resistivity is resolved by using resistivity determined from the measurements made at the first time.
    • 公开了一种用于确定井筒直径的方法。 该方法包括从沿着井筒的第一位置引入井眼中的电磁场和围绕井筒的地层。 在第一时间,相对于第一位置处的场测量在与第一位置轴向间隔开并且彼此相对的第二位置和第三位置处由电磁场引起的信号。 第二次重复测量,并且从第一次和第二次的相位测量确定第一次和第二次的地层的电阻率和井筒直径。 通过使用从第一次进行的测量确定的电阻来解决电阻率中的任何歧义。
    • 3. 发明授权
    • Rock stress modification technique
    • 岩石应力改造技术
    • US07828063B2
    • 2010-11-09
    • US12419352
    • 2009-04-07
    • Tom OlsenTom R. Bratton
    • Tom OlsenTom R. Bratton
    • E21B47/00
    • E21B43/26E21B49/006
    • A technique involves facilitating fracturing operations along a wellbore extending through a subterranean formation. A stress device is deployed in a wellbore and activated to engage a surrounding wall. The stress device can then be manipulated to create a reduced stress region in the formation at a desired location along the wellbore. The reduced stress region facilitates the controlled formation of a fracture in the formation at the desired location. Furthermore, the stress device can be moved and the process repeated at multiple locations along the wellbore.
    • 一种技术涉及促进沿着延伸穿过地下地层的井筒的压裂作业。 应力装置部署在井眼中并被激活以接合周围的壁。 然后可以操纵应力装置以在沿着井眼的期望位置处在地层中产生减小的应力区域。 减小的应力区域有助于在所需位置处在地层中受控地形成裂缝。 此外,应力装置可以移动,并且该过程沿着井筒在多个位置重复。
    • 4. 发明申请
    • DISCRIMINATING NATURAL FRACTURE- AND STRESS-INDUCED SONIC ANISOTROPY USING A COMBINATION OF IMAGE AND SONIC LOGS
    • 使用图像和声音记录的组合来辨别自然断裂和应力诱导的声像异构
    • US20080062814A1
    • 2008-03-13
    • US11553565
    • 2006-10-27
    • Romain C.A. PrioulJohn Adam DonaldRandolph KoepsellTom R. BrattonPeter KaufmanClaude Signer
    • Romain C.A. PrioulJohn Adam DonaldRandolph KoepsellTom R. BrattonPeter KaufmanClaude Signer
    • G01V1/40
    • G01V1/50
    • Fracture- and stress-induced sonic anisotropy is distinguished using a combination of image and sonic logs. Borehole image and sonic logs are acquired via known techniques. Analysis of sonic data from monopole P- and S-waves, monopole Stoneley and cross-dipole shear sonic data in an anisotropic formation are used to estimate at least one compressional and two shear moduli, and the dipole fast shear direction. Fracture analysis of image logs enables determination of fracture types and geometrical properties. Geological and geomechanical analysis from image logs provide a priori discrimination of natural fractures and stress-induced fractures. A forward quantitative model of natural fracture- and stress-induced sonic anisotropy based on the knowledge of fracture properties interpreted from image logs allows the computation of the fast-shear azimuth and the difference in slowness between the fast- and slow-shear. The misfit between predicted and observed sonic measurements (i.e. fast-shear azimuth and slownesses) is then optimized in order to discriminate depth zones with an elastic medium as being influenced by the presence of open natural fractures, closed natural fractures and fractures induced by non-equal principal stress effects.
    • 使用图像和声波测井的组合来区分断裂和应力诱发的声波各向异性。 井眼图像和声波测井是通过已知技术获得的。 分析来自单极P波和S波的声波数据,单极石斯利利和各向异性地层中的交叉偶极剪切声波数据用于估计至少一个压缩和两个剪切模量以及偶极子快速剪切方向。 图像记录的断裂分析可以确定断裂类型和几何特性。 图像记录的地质和地质力学分析提供了天然裂缝和应力诱发裂缝的先验区分。 基于从图像记录解释的断裂特性的知识,天然断裂和应力诱导的声波各向异性的前向定量模型允许快速剪切方位的计算和快剪切与慢剪切之间的慢度差。 然后优化预测和观察到的声波测量(即快速剪切方位角和慢度)之间的失配,以便与弹性介质区分深度区域受到开放天然裂缝,闭合天然裂缝和非线性引起的骨折的影响, 相等的主应力影响。
    • 5. 发明授权
    • Determining differential stress based on formation curvature and mechanical units using borehole logs
    • 基于地层曲率和使用井眼测井的机械单位确定微分应力
    • US09157318B2
    • 2015-10-13
    • US13299106
    • 2011-11-17
    • Randy KoepsellTom R. Bratton
    • Randy KoepsellTom R. Bratton
    • G06F7/60E21B49/00G01V1/30G01V1/50
    • E21B49/00G01V1/30G01V1/50G01V2210/626G01V2210/646G01V2210/66G01V2210/665
    • A method for performing wellbore operations of a field having a subterranean formation. The method includes determining, based on an image log of a wellbore penetrating the subterranean formation, a plurality of interpreted geological surfaces, identifying a plurality of estimated slickensides from the plurality of interpreted geological surfaces based on at least one pre-determined criterion, calculating, using a processor, a differential stress using a curvature model representing at least one mechanical unit defined by the plurality of estimated slickensides, generating a stress model using the differential stress, identifying a modeled wellbore stress-induced failure in response to a total stress value in the stress model exceeding a strength property of the subterranean formation, determining a difference between the modeled wellbore stress-induced failure and an observed stress-induced failure in the subterranean formation, and updating the stress model by adjusting the plurality of estimated slickensides to, in turn, adjust the difference.
    • 一种用于进行具有地层的场的井眼操作的方法。 该方法包括基于穿透地下地层的井筒的图像记录来确定多个解释的地质表面,基于至少一个预定准则来识别来自多个解释地质表面的多个估计的光滑化物, 使用处理器,使用表示由所述多个估计的光滑体定义的至少一个机械单元的曲率模型的差分应力,使用所述差分应力产生应力模型,以响应于总应力值识别建模的井筒应力诱发的故障 所述应力模型超过所述地层的强度性质,确定所述建模的井眼应力诱发的破坏与所述地下地层中观测到的应力引起的破坏之间的差异,以及通过将所述多个估计的光滑化物调整到 转,调整差异。